Network discovery with DCM

被引:118
作者
Friston, Karl J. [1 ]
Li, Baojuan [3 ]
Daunizeau, Jean [2 ]
Stephan, Klaas E. [2 ]
机构
[1] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[2] Univ Zurich, Dept Econ, Lab Social & Neural Syst Res, CH-8006 Zurich, Switzerland
[3] Natl Univ Def Technol, Coll Mechatron Engn & Automat, Changsha 410073, Hunan, Peoples R China
基金
英国惠康基金;
关键词
Bayesian; Neuronal; Generalised Filtering; Dynamic Causal Modelling; fMRI; Random differential equations; Stochastic; Resting-state; Connectivity; DYNAMIC CAUSAL-MODELS; STATE FUNCTIONAL CONNECTIVITY; CLASSICAL RECEPTIVE-FIELD; HUMAN BRAIN; FMRI DATA; STRUCTURAL CONNECTIVITY; NEURAL-NETWORKS; VISUAL-CORTEX; SYSTEMS; MRI;
D O I
10.1016/j.neuroimage.2010.12.039
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1202 / 1221
页数:20
相关论文
共 97 条
[1]   Reaching beyond the classical receptive field of VI neurons: horizontal or feedback axons? [J].
Angelucci, A ;
Bullier, J .
JOURNAL OF PHYSIOLOGY-PARIS, 2003, 97 (2-3) :141-154
[2]  
[Anonymous], 2012, Applications of centre manifold theory
[3]  
[Anonymous], COMPUTATION CAUSATIO
[4]  
[Anonymous], 2009, CAUSALITY MODELS REA
[5]   BUBBLING OF ATTRACTORS AND SYNCHRONIZATION OF CHAOTIC OSCILLATORS [J].
ASHWIN, P ;
BUESCU, J ;
STEWART, I .
PHYSICS LETTERS A, 1994, 193 (02) :126-139
[6]   From attractor to chaotic saddle: A tale of transverse instability [J].
Ashwin, P ;
Buescu, J ;
Stewart, I .
NONLINEARITY, 1996, 9 (03) :703-737
[7]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[8]   Dynamics of a neural system with a multiscale architecture [J].
Breakspear, M ;
Stam, CJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1051-1074
[9]   Dynamic connectivity in neural systems - Theoretical and empirical considerations [J].
Breakspear, M .
NEUROINFORMATICS, 2004, 2 (02) :205-225
[10]   On the phase reduction and response dynamics of neural oscillator populations [J].
Brown, E ;
Moehlis, J ;
Holmes, P .
NEURAL COMPUTATION, 2004, 16 (04) :673-715