S phase-specific proteolytic cleavage is required to activate stable DNA binding by the CDP/Cut homeodomain protein

被引:87
作者
Moon, NS
Premdas, P
Truscott, M
Leduy, L
Bérubé, G
Nepveu, A
机构
[1] McGill Univ, Ctr Hlth, Mol Oncol Grp, Montreal, PQ H3A 1A1, Canada
[2] McGill Univ, Dept Biochem, Montreal, PQ H3A 1A1, Canada
[3] McGill Univ, Dept Med, Montreal, PQ H3A 1A1, Canada
[4] McGill Univ, Dept Oncol, Montreal, PQ H3A 1A1, Canada
关键词
D O I
10.1128/MCB.21.18.6332-6345.2001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The CCAAT displacement protein (CDP), the homologue of the Drosophila melanogaster Cut protein, contains four DNA binding domains that function in pairs. Cooperation between Cut repeat 3 and the Cut homeodomain allows stable DNA binding to the ATCGAT motif, an activity previously shown to be upregulated in S phase. Here we showed that the full-length CDP/Cut protein is incapable of stable DNA binding and that the ATCGAT binding activity present in cells involves a 110-kDa carboxy-terminal peptide of CDP/Cut. A vector expressing CDP/Cut with Myc and hemagglutinin epitope tags at either end generated N- and C-terminal products of 90 and 110 kDa, suggesting that proteolytic cleavage was involved. In vivo pulse/chase labeling experiments confirmed that the 110-kDa protein was derived from the full-length CDP/Cut protein. Proteolytic processing was weak or not detectable in G(0) and G(1) but increased in populations of cells enriched in S phase, and the appearance of the 110-kDa protein coincided with the increase in ATCGAT DNA binding. Interestingly, the amino-truncated and the full-length CDP/Cut isoforms exhibited different transcriptional properties in a reporter assay. We conclude that proteolytic processing of CDP/Cut at the G(1)/S transition generates a CDP/Cut isoform with distinct DNA binding and transcriptional activities. These findings, together with the cleavage of the Scc1 protein at mitosis, suggest that site-specific proteolysis may play an important role in the regulation of cell cycle progression.
引用
收藏
页码:6332 / 6345
页数:14
相关论文
共 51 条
[11]  
Blomberg I, 1999, MOL CELL BIOL, V19, P6183
[12]   TRANSFORMATION OF SENSORY ORGANS BY MUTATIONS OF THE CUT LOCUS OF DROSOPHILA-MELANOGASTER [J].
BODMER, R ;
BARBEL, S ;
SHEPERD, S ;
JACK, JW ;
JAN, LY ;
JAN, YN .
CELL, 1987, 51 (02) :293-307
[13]  
BRAUN W, 1942, J EXP ZOOL, V84, P325
[14]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[15]   Roles for proteolysis and trafficking in notch maturation and signal transduction [J].
Chan, YM ;
Jan, YN .
CELL, 1998, 94 (04) :423-426
[16]   The mammalian Cut homeodomain protein functions as a cell-cycle-dependent transcriptional repressor which downmodulates p21WAF1/CIP1/SDI1 in S phase [J].
Coqueret, O ;
Bérubé, G ;
Nepveu, A .
EMBO JOURNAL, 1998, 17 (16) :4680-4694
[17]   THE HUMAN CUT HOMEODOMAIN PROTEIN REPRESSES TRANSCRIPTION FROM THE C-MYC PROMOTER [J].
DUFORT, D ;
NEPVEU, A .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4251-4257
[18]   GENERATION OF P50 SUBUNIT OF NF-KAPPA-B BY PROCESSING OF P105 THROUGH AN ATP-DEPENDENT PATHWAY [J].
FAN, CM ;
MANIATIS, T .
NATURE, 1991, 354 (6352) :395-398
[19]   Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation [J].
Gervais, FG ;
Xu, DG ;
Robertson, GS ;
Vaillancourt, JP ;
Zhu, YX ;
Huang, JQ ;
LeBlanc, A ;
Smith, D ;
Rigby, M ;
Shearman, MS ;
Clarke, FE ;
Zheng, H ;
Van Der Ploeg, LHT ;
Ruffolo, SC ;
Thornberry, NA ;
Xanthoudakis, S ;
Zamboni, RJ ;
Roy, S ;
Nicholson, DW .
CELL, 1999, 97 (03) :395-406
[20]   DNA-BINDING SPECIFICITY OF THE CUT REPEATS FROM THE HUMAN CUT-LIKE PROTEIN [J].
HARADA, R ;
BERUBE, G ;
TAMPLIN, OJ ;
DENISLAROSE, C ;
NEPVEU, A .
MOLECULAR AND CELLULAR BIOLOGY, 1995, 15 (01) :129-140