Caveolae and the caveolins in human disease

被引:18
作者
Campbell, L [1 ]
Gumbleton, M
Ritchie, K
机构
[1] Cardiff Univ, Welsh Sch Pharm, Cardiff CF10 3XF, S Glam, Wales
[2] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
关键词
caveolin; caveolae; disease; cancer; atherosclerosis; Alzheimer's disease; diabetes; muscular dystrophy; inflammation;
D O I
10.1016/S0169-409X(01)00145-4
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
There has been an exponential growth in caveolae research since the early 1990s. The caveolae membrane system comprises unique lipid and protein domains, and fulfills a role in a wide range of processes. At the plasma membrane caveolae serve to compartmentalise and integrate a wide range of signal transduction processes. A key structural and functional protein for caveolae is caveolin. Caveolin proteins possess a 'scaffolding' domain which for caveolins-1 and -3 appear central to many of the reported signal regulation functions for caveolae. Caveolae or caveolin protein are increasingly implicated in the molecular pathology of a number of diseases. Opportunities exist for basic and applied investigators working within the pharmaceutical sciences to exploit the caveolae membrane system to identify novel pharmacological targets and therapeutic strategies, including the delivery of pharmacologically active caveolin based peptides. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:325 / 335
页数:11
相关论文
共 66 条
[1]   DNA methylation as a target for drug design [J].
Bender, CM ;
Zingg, JM ;
Jones, PA .
PHARMACEUTICAL RESEARCH, 1998, 15 (02) :175-187
[2]  
BONILLA E, 1981, AM J PATHOL, V104, P167
[3]   Axonal amyloid precursor protein expressed by neurons in vitro is present in a membrane fraction with caveolae-like properties [J].
Bouillot, C ;
Prochiantz, A ;
Rougon, G ;
Allinquant, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (13) :7640-7644
[4]  
Brouillet E, 1999, J NEUROSCI, V19, P1717
[5]   In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation [J].
Bucci, M ;
Gratton, JP ;
Rudic, RD ;
Acevedo, L ;
Roviezzo, F ;
Cirino, G ;
Sessa, WC .
NATURE MEDICINE, 2000, 6 (12) :1362-1367
[6]   Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes [J].
Cline, GW ;
Petersen, KF ;
Krssak, M ;
Shen, J ;
Hundal, RS ;
Trajanoski, Z ;
Inzucchi, S ;
Dresner, A ;
Rothman, DL ;
Shulman, GI .
NEW ENGLAND JOURNAL OF MEDICINE, 1999, 341 (04) :240-246
[7]   Trojan peptides: the penetratin system for intracellular delivery [J].
Derossi, D ;
Chassaing, G ;
Prochiantz, A .
TRENDS IN CELL BIOLOGY, 1998, 8 (02) :84-87
[8]   Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo - A role for the caveolin-scaffolding domain [J].
Engelman, JA ;
Chu, C ;
Lin, A ;
Jo, H ;
Ikezu, T ;
Okamoto, T ;
Kohtz, DS ;
Lisanti, MP .
FEBS LETTERS, 1998, 428 (03) :205-211
[9]   Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1) -: Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines [J].
Engelman, JA ;
Zhang, XL ;
Lisanti, MP .
FEBS LETTERS, 1999, 448 (2-3) :221-230
[10]   Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3) - Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/731) [J].
Engelman, JA ;
Zhang, XL ;
Galbiati, F ;
Lisanti, MP .
FEBS LETTERS, 1998, 429 (03) :330-336