Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices

被引:153
作者
Lin, Yung-Chen [1 ]
Lu, Kuo-Chang [1 ]
Wu, Wen-Wei [2 ]
Bai, Jingwei [1 ]
Chen, Lih J. [2 ]
Tu, K. N. [1 ]
Huang, Yu [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu, Taiwan
关键词
D O I
10.1021/nl073279r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the formation of PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices from such heterostructures. Scanning electron microscopy studies show that silicon nanowires can be converted into PtSi nanowires through controlled reactions between lithographically defined platinum pads and silicon nanowires. High-resolution transmission electron microscopy studies show that PtSi/Si/PtSi heteorstructure has an atomically sharp interface with epitaxial relationships of Si[1 (1) over bar0]//PtSi[010] and Si(111)//PtSi(101). Electrical measurements show that the pure PtSi nanowires have low resistivities similar to 28.6 mu Omega.cm and high breakdown current densities > 1 x 10(8) A/cm(2). Furthermore, using single crystal PtSi/Si/PtSi nanowire heterostructures with atomically sharp interfaces, we have fabricated high-performance nanoscale field-effect transistors from intrinsic silicon nanowires, in which the source and drain contacts are defined by the metallic PtSi nanowire regions, and the gate length is defined by the Si nanowire region. Electrical measurements show nearly perfect p-channel enhancement mode transistor behavior with a normalized transconductance of 0.3 mS/mu m, field-effect hole mibility of 168 cm(2)N.s, and on/off ratio > 10(7), demonstrating the best performing device from intrinsic silicon nanowires.
引用
收藏
页码:913 / 918
页数:6
相关论文
共 36 条
[1]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[2]   WORK FUNCTION AND BARRIER HEIGHTS OF TRANSITION-METAL SILICIDES [J].
BUCHER, E ;
SCHULZ, S ;
LUXSTEINER, MC ;
MUNZ, P ;
GUBLER, U ;
GREUTER, F .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1986, 40 (02) :71-77
[3]   Synthesis and postgrowth doping of silicon nanowires [J].
Byon, K ;
Tham, D ;
Fischer, JE ;
Johnson, AT .
APPLIED PHYSICS LETTERS, 2005, 87 (19) :1-3
[4]   High-κ/metal-gate stack and its MOSFET characteristics [J].
Chau, R ;
Datta, S ;
Doczy, M ;
Doyle, B ;
Kavalieros, J ;
Metz, M .
IEEE ELECTRON DEVICE LETTERS, 2004, 25 (06) :408-410
[5]   Diameter-controlled synthesis of single-crystal silicon nanowires [J].
Cui, Y ;
Lauhon, LJ ;
Gudiksen, MS ;
Wang, JF ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2001, 78 (15) :2214-2216
[6]   Doping and electrical transport in silicon nanowires [J].
Cui, Y ;
Duan, XF ;
Hu, JT ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (22) :5213-5216
[7]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[8]   Assembled semiconductor nanowire thin films for high-performance flexible macroelectronics [J].
Duan, Xiangfeng .
MRS BULLETIN, 2007, 32 (02) :134-141
[9]   SILICIDE SCHOTTKY BARRIERS - ELEMENTAL DESCRIPTION [J].
FREEOUF, JL .
SOLID STATE COMMUNICATIONS, 1980, 33 (10) :1059-1061
[10]   The influence of the surface migration of gold on the growth of silicon nanowires [J].
Hannon, JB ;
Kodambaka, S ;
Ross, FM ;
Tromp, RM .
NATURE, 2006, 440 (7080) :69-71