A note on the peeling theorem in higher dimensions

被引:6
作者
Pravdová, A
Pravda, V
Coley, A
机构
[1] Acad Sci Czech Republ, Math Inst, Prague 11567 1, Czech Republic
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
关键词
D O I
10.1088/0264-9381/22/13/001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate the 'peeling property' of the Weyl tensor in higher dimensions in the case of even dimensions (and with some additional assumptions), thereby providing a first step towards an understanding of the general peeling behaviour of the Weyl tensor, and the asymptotic structure at null infinity, in higher dimensions.
引用
收藏
页码:2535 / 2538
页数:4
相关论文
共 8 条
[1]   GRAVITATIONAL WAVES IN GENERAL RELATIVITY .7. WAVES FROM AXI-SYMMETRIC ISOLATED SYSTEMS [J].
BONDI, H ;
VANDERBU.MG ;
METZNER, AWK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 269 (1336) :21-&
[2]   Classification of the Weyl tensor in higher dimensions [J].
Coley, A ;
Milson, R ;
Pravda, V ;
Pravdová, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (07) :L35-L41
[3]   Asymptotic flatness and Bondi energy in higher dimensional gravity [J].
Hollands, S ;
Ishibashi, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)
[4]   Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions [J].
Hollands, S ;
Wald, RM .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (22) :5139-5145
[5]   Alignment and algebraically special tensors in Lorentzian geometry [J].
Milson, R ;
Coley, A ;
Pravda, V ;
Pravdová, A .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2005, 2 (01) :41-61
[6]   AN APPROACH TO GRAVITATIONAL RADIATION BY A METHOD OF SPIN COEFFICIENTS [J].
NEWMAN, E ;
PENROSE, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (03) :566-&
[7]   ASYMPTOTIC PROPERTIES OF FIELDS AND SPACE-TIMES [J].
PENROSE, R .
PHYSICAL REVIEW LETTERS, 1963, 10 (02) :66-&
[8]   GRAVITATIONAL WAVES IN GENERAL RELATIVITY .8. WAVES IN ASYMPTOTICALLY FLAT SPACE-TIME [J].
SACHS, RK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 270 (1340) :103-&