On delay-dependent stability under model transformations of some neutral linear systems

被引:120
作者
Niculescu, SI [1 ]
机构
[1] Univ Technol Compiegne, Ctr REch Royallieu, HEUDIASYC, F-60205 Compiegne, France
关键词
D O I
10.1080/00207170010017400
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the stability analysis of a class of neutral linear systems. Some sufficient delay-dependent stability conditions are derived in terms of an appropriate model transformation of the original system, transformation similar to the one used in the retarded case. The analysis makes use of an appropriate construction of a degenerate Lyapunov-Krasovskii functional. Several computational schemes and frequency-domain interpretations, as well as an example are also presented.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 32 条
[1]  
Barbalat I., 1959, REV ROUMAINE MATH PU, V4, P267
[2]   ABOUT STABILITY OF SOME FUNCTIONAL-DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE [J].
BELLEN, A ;
KOLMANOVSKII, VB ;
TORELLI, L ;
VERMIGLIO, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (01) :59-84
[3]   FREQUENCY SWEEPING TESTS FOR STABILITY INDEPENDENT OF DELAY [J].
CHEN, J ;
LATCHMAN, HA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (09) :1640-1645
[4]  
Cooke K. L., 1986, Funkc Ekvacioj, V29, P77
[5]   A delay equation representation of pulse circulation on a ring in excitable media [J].
Courtemanche, M ;
Keener, JP ;
Glass, L .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (01) :119-142
[7]  
Elsgolts L. E., 1973, MATH SCI ENG, V105
[8]  
Gopalsamy K., 1992, MATH ITS APPL SERIES, V74
[9]   Stability of perturbed systems with time-varying delays [J].
GoubetBartholomeus, A ;
Dambrine, M ;
Richard, JP .
SYSTEMS & CONTROL LETTERS, 1997, 31 (03) :155-163
[10]  
GU K, 2000, IN PRESS IEEE T AUTO