Global convergence of a kinetic model of chemotaxis to a perturbed Keller-Segel model

被引:11
作者
Chalub, FACC
Kang, K
机构
[1] Univ Lisbon, CMAF, P-1649003 Lisbon, Portugal
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
kinetic models; chemotaxis; diffusion limits;
D O I
10.1016/j.na.2005.04.048
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of kinetic models of chemotaxis with two positive non-dimensional parameters coupled to a parabolic equation of the chemo-attractant. If both parameters are set equal zero, we have the classical Keller-Segel model for chemotaxis. We prove global existence of solutions of this two-parameters kinetic model and prove convergence of this model to models of chemotaxis with global existence when one of these two parameters is set equal zero. In one case, we find as a limit model a kinetic model of chemotaxis while in the other case we find a perturbed Keller-Segel model with global existence of solutions. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:686 / 695
页数:10
相关论文
共 17 条
[2]  
ALT W, 1980, P C HEID 1979 SPRING, P353
[3]  
CHALUB FAC, ULMAT2005002
[4]   Kinetic models for chemotaxis and their drift-diffusion limits [J].
Chalub, FACC ;
Markowich, PA ;
Perthame, B ;
Schmeiser, C .
MONATSHEFTE FUR MATHEMATIK, 2004, 142 (1-2) :123-141
[5]   Finite-time aggregation into a single point in a reaction-diffusion system [J].
Herrero, MA ;
Medina, E ;
Velazquez, JJL .
NONLINEARITY, 1997, 10 (06) :1739-1754
[6]   The diffusion limit of transport equations derived from velocity-jump processes [J].
Hillen, T ;
Othmer, HG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (03) :751-775
[7]  
Horstmann D., 2003, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, V105, P1
[8]  
HWANG H, 2005, SIAM J NONLINEAR ANA, V6, P1177
[9]  
Hwang HJ, 2005, DISCRETE CONT DYN-B, V5, P319
[10]   MODEL FOR CHEMOTAXIS [J].
KELLER, EF ;
SEGEL, LA .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 30 (02) :225-&