Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

被引:118
作者
Barrangou, Rodolphe [1 ]
Birmingham, Amanda [2 ]
Wiemann, Stefan [3 ,4 ]
Beijersbergen, Roderick L. [5 ]
Hornung, Veit [6 ]
Smith, Anja van Brabant [2 ]
机构
[1] N Carolina State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27695 USA
[2] Dharmacon, Lafayette, CO 80026 USA
[3] German Canc Res Ctr, Div Mol Genome Anal, D-69120 Heidelberg, Germany
[4] German Canc Res Ctr, Genom & Prote Core Facil, D-69120 Heidelberg, Germany
[5] Netherlands Canc Inst, NL-1066 CX Amsterdam, Netherlands
[6] Univ Bonn, Univ Hosp, Inst Mol Med, D-53128 Bonn, Germany
关键词
SEQUENCE-SPECIFIC CONTROL; ONE-STEP GENERATION; HUMAN-CELLS; IN-VIVO; CAS SYSTEMS; FUNCTIONAL GENOMICS; ADAPTIVE IMMUNITY; MAMMALIAN-CELLS; GENE-EXPRESSION; GUIDE RNA;
D O I
10.1093/nar/gkv226
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and reinvigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications.
引用
收藏
页码:3407 / 3419
页数:13
相关论文
共 144 条
[1]   Diversifying microRNA sequence and function [J].
Ameres, Stefan L. ;
Zamore, Phillip D. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2013, 14 (08) :475-488
[2]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[3]   Unraveling the potential of CRISPR-Cas9 for gene therapy [J].
Barrangou, Rodolphe ;
May, Andrew P. .
EXPERT OPINION ON BIOLOGICAL THERAPY, 2015, 15 (03) :311-314
[4]   CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity [J].
Barrangou, Rodolphe ;
Marraffini, Luciano A. .
MOLECULAR CELL, 2014, 54 (02) :234-244
[5]   Understanding functional miRNA-target interactions in vivo by site-specific genome engineering [J].
Bassett, Andrew R. ;
Azzam, Ghows ;
Wheatley, Lucy ;
Tibbit, Charlotte ;
Rajakumar, Timothy ;
McGowan, Simon ;
Stanger, Nathan ;
Ewels, Philip Andrew ;
Taylor, Stephen ;
Ponting, Chris P. ;
Liu, Ji-Long ;
Sauka-Spengler, Tatjana ;
Fulga, Tudor A. .
NATURE COMMUNICATIONS, 2014, 5
[6]   A large-scale RNAi screen in human cells identifies new components of the p53 pathway [J].
Berns, K ;
Hijmans, EM ;
Mullenders, J ;
Brummelkamp, TR ;
Velds, A ;
Heimerikx, M ;
Kerkhoven, RM ;
Madiredjo, M ;
Nijkamp, W ;
Weigelt, B ;
Agami, R ;
Ge, W ;
Cavet, G ;
Linsley, PS ;
Beijersbergen, RL ;
Bernards, R .
NATURE, 2004, 428 (6981) :431-437
[7]   3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [J].
Birmingham, A ;
Anderson, EM ;
Reynolds, A ;
Ilsley-Tyree, D ;
Leake, D ;
Fedorov, Y ;
Baskerville, S ;
Maksimova, E ;
Robinson, K ;
Karpilow, J ;
Marshall, WS ;
Khvorova, A .
NATURE METHODS, 2006, 3 (03) :199-204
[8]  
Birmingham A., 2014, FRONT RNAI, V1, P3
[9]   Statistical methods for analysis of high-throughput RNA interference screens [J].
Birmingham, Amanda ;
Selfors, Laura M. ;
Forster, Thorsten ;
Wrobel, David ;
Kennedy, Caleb J. ;
Shanks, Emma ;
Santoyo-Lopez, Javier ;
Dunican, Dara J. ;
Long, Aideen ;
Kelleher, Dermot ;
Smith, Queta ;
Beijersbergen, Roderick L. ;
Ghazal, Peter ;
Shamu, Caroline E. .
NATURE METHODS, 2009, 6 (08) :569-575
[10]   Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin [J].
Bolotin, A ;
Ouinquis, B ;
Sorokin, A ;
Ehrlich, SD .
MICROBIOLOGY-SGM, 2005, 151 :2551-2561