Asymptotics of the maximum likelihood estimator for general hidden Markov models

被引:61
作者
Douc, R [1 ]
Matias, C
机构
[1] Ecole Natl Super Telecommun, Dpt TSI, CNRS, URA 820, Paris, France
[2] Univ Paris Sud, Lab Probabil Stat & Modelisat, CNRS, UMR C 8628, F-91405 Orsay, France
关键词
asymptotic normality; consistency; geometric ergodicity; hidden Markov models; identifiability; maximum likelihood estimation;
D O I
10.2307/3318493
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the consistency and asymptotic normality of the maximum likelihood estimator for a possibly non-stationary hidden Markov model where the hidden state space is a separable and compact space not necessarily finite, and both the transition kernel of the hidden chain and the conditional distribution of the observations depend on a parameter theta. For identifiable models, consistency and asymptotic normality of the maximum likelihood estimator are shown to follow from exponential memorylessness properties of the state prediction filter and geometric ergodicity of suitably extended Markov chains.
引用
收藏
页码:381 / 420
页数:40
相关论文
共 31 条
[1]  
[Anonymous], 1992, Stochastic Stability of Markov chains
[2]   ANALYSIS OF AN IDENTIFICATION ALGORITHM ARISING IN THE ADAPTIVE ESTIMATION OF MARKOV-CHAINS [J].
ARAPOSTATHIS, A ;
MARCUS, SI .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1990, 3 (01) :1-29
[3]   Statistics of ridden Markov chains, finite state space, nonstationary case [J].
Bakry, D ;
Milhaud, X ;
Vandekerkhove, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (02) :203-206
[4]   STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1554-&
[5]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[6]  
Bickel P., 1993, EFFICIENT ADAPTATIVE
[7]  
Bickel P.J., 1996, BERNOULLI, V2, P199
[8]  
Bickel PJ, 1998, ANN STAT, V26, P1614
[9]   MONTE-CARLO EM ESTIMATION FOR TIME-SERIES MODELS INVOLVING COUNTS [J].
CHAN, KS ;
LEDOLTER, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :242-252
[10]  
CHURCHILL GA, 1989, B MATH BIOL, V51, P79