Asymptotics of the maximum likelihood estimator for general hidden Markov models

被引:61
作者
Douc, R [1 ]
Matias, C
机构
[1] Ecole Natl Super Telecommun, Dpt TSI, CNRS, URA 820, Paris, France
[2] Univ Paris Sud, Lab Probabil Stat & Modelisat, CNRS, UMR C 8628, F-91405 Orsay, France
关键词
asymptotic normality; consistency; geometric ergodicity; hidden Markov models; identifiability; maximum likelihood estimation;
D O I
10.2307/3318493
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the consistency and asymptotic normality of the maximum likelihood estimator for a possibly non-stationary hidden Markov model where the hidden state space is a separable and compact space not necessarily finite, and both the transition kernel of the hidden chain and the conditional distribution of the observations depend on a parameter theta. For identifiable models, consistency and asymptotic normality of the maximum likelihood estimator are shown to follow from exponential memorylessness properties of the state prediction filter and geometric ergodicity of suitably extended Markov chains.
引用
收藏
页码:381 / 420
页数:40
相关论文
共 31 条
[11]  
DACUNHACASTELLE D, 1986, PROBABILITY STAT, V2
[12]  
DEJONG P, 1995, BIOMETRIKA, V82, P339
[13]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[14]   Monte Carlo maximum likelihood estimation for non-Gaussian state space models [J].
Durbin, J ;
Koopman, SJ .
BIOMETRIKA, 1997, 84 (03) :669-684
[15]   CORRELATION-FUNCTIONS OF A FUNCTION OF A FINITE-STATE MARKOV PROCESS WITH APPLICATION TO CHANNEL KINETICS [J].
FREDKIN, DR ;
RICE, JA .
MATHEMATICAL BIOSCIENCES, 1987, 87 (02) :161-172
[16]  
HALL P, 1980, MARTINGALE LIMIT THE
[17]  
Jensen JL, 1999, ANN STAT, V27, P514
[18]   HIDDEN MARKOV-MODELS FOR SPEECH RECOGNITION [J].
JUANG, BH ;
RABINER, LR .
TECHNOMETRICS, 1991, 33 (03) :251-272
[19]   Stochastic volatility: Likelihood inference and comparison with ARCH models [J].
Kim, S ;
Shephard, N ;
Chib, S .
REVIEW OF ECONOMIC STUDIES, 1998, 65 (03) :361-393
[20]   Basic properties of the projective product with application to products of column-allowable nonnegative matrices [J].
Le Gland, F ;
Mevel, L .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2000, 13 (01) :41-62