An integrated index for detection of Sudden Cardiac Death using Discrete Wavelet Transform and nonlinear features

被引:116
作者
Acharya, U. Rajendra [1 ,2 ]
Fujita, Hamido [3 ]
Sudarshan, Vidya K. [1 ]
Sree, Vinitha S. [4 ]
Eugene, Lim Wei Jie [1 ]
Ghista, Dhanjoo N.
Tan, Ru San [5 ]
机构
[1] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[2] SIM Univ, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[3] IPU, Fac Software & Informat Sci, Takizawa, Iwate, Japan
[4] Cyrcadia Hlth, Reno, NV 89502 USA
[5] Natl Heart Ctr, Dept Cardiol, Singapore, Singapore
关键词
ECG; DWT; SCD; Cardiac death; Nonlinear; Ventricular fibrillation; HEART-RATE-VARIABILITY; CARDIOVASCULAR-DISEASE; PREDICTION; MORTALITY; RISK; EPIDEMIOLOGY; DIAGNOSIS; DYNAMICS; UPDATE; ECG;
D O I
10.1016/j.knosys.2015.03.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early prediction of person at risk of Sudden Cardiac Death (SCD) with or without the onset of Ventricular Tachycardia (VT) or Ventricular Fibrillation (VF) still remains a continuing challenge to clinicians. In this work, we have presented a novel integrated index for prediction of SCD with a high level of accuracy by using electrocardiogram (ECG) signals. To achieve this, nonlinear features (Fractal Dimension (FD), Hurst's exponent (H), Detrended Fluctuation Analysis (DFA), Approximate Entropy (ApproxEnt), Sample Entropy (SampEnt), and Correlation Dimension (CD)) are first extracted from the second level Discrete Wavelet Transform (DWT) decomposed ECG signal. The extracted nonlinear features are ranked using t-value and then, a combination of highly ranked features are used in the formulation and employment of an integrated Sudden Cardiac Death Index (SCDI). This calculated novel SCDI can be used to accurately predict SCD (four minutes before the occurrence) by using just one numerical value four minutes before the SCD episode. Also, the nonlinear features are fed to the following classifiers: Decision Tree (DT), k-Nearest Neighbour (KNN), and Support Vector Machine (SVM). The combination of DWT and nonlinear analysis of ECG signals is able to predict SCD with an accuracy of 92.11% (KNN), 98.68% (SVM), 93.42% (KNN) and 92.11% (SVM) for first, second, third and fourth minutes before the occurrence of SCD, respectively. The proposed SCDI will constitute a valuable tool for the medical professionals to enable them in SCD prediction. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 67 条
[21]  
Ghista D.N., 2009, APPL BIOMEDICAL ENG
[22]   NONDIMENSIONAL PHYSIOLOGICAL INDICES FOR MEDICAL ASSESSMENT [J].
Ghista, Dhanjoo N. .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2009, 9 (04) :643-669
[23]   PHYSIOLOGICAL SYSTEMS' NUMBERS IN MEDICAL DIAGNOSIS AND HOSPITAL COST-EFFECTIVE OPERATION [J].
Ghista, Dhanjoo N. .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2004, 4 (04) :401-418
[24]   Heart Disease and Stroke Statistics-2013 Update A Report From the American Heart Association [J].
Go, Alan S. ;
Mozaffarian, Dariush ;
Roger, Veronique L. ;
Benjamin, Emelia J. ;
Berry, Jarett D. ;
Borden, William B. ;
Bravata, Dawn M. ;
Dai, Shifan ;
Ford, Earl S. ;
Fox, Caroline S. ;
Franco, Sheila ;
Fullerton, Heather J. ;
Gillespie, Cathleen ;
Hailpern, Susan M. ;
Heit, John A. ;
Howard, Virginia J. ;
Huffman, Mark D. ;
Kissela, Brett M. ;
Kittner, Steven J. ;
Lackland, Daniel T. ;
Lichtman, Judith H. ;
Lisabeth, Lynda D. ;
Magid, David ;
Marcus, Gregory M. ;
Marelli, Ariane ;
Matchar, David B. ;
McGuire, Darren K. ;
Mohler, Emile R. ;
Moy, Claudia S. ;
Mussolino, Michael E. ;
Nichol, Graham ;
Paynter, Nina P. ;
Schreiner, Pamela J. ;
Sorlie, Paul D. ;
Stein, Joel ;
Turan, Tanya N. ;
Virani, Salim S. ;
Wong, Nathan D. ;
Woo, Daniel ;
Turner, Melanie B. .
CIRCULATION, 2013, 127 (01) :E6-E245
[25]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[26]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[27]  
Greenwald S., 1986, Development and analysis of a ventricular fibrillation detector
[28]   Characteristics of heart beat intervals and prediction of death [J].
Hallstrom, AP ;
Stein, PK ;
Schneider, R ;
Hodges, M ;
Schmidt, G ;
Ulm, K .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2005, 100 (01) :37-45
[29]   APPROACH TO AN IRREGULAR TIME-SERIES ON THE BASIS OF THE FRACTAL THEORY [J].
HIGUCHI, T .
PHYSICA D-NONLINEAR PHENOMENA, 1988, 31 (02) :277-283
[30]  
Ho KKL, 1997, CIRCULATION, V96, P842