Chaos synchronization and parameter identification of three time scales brushless DC motor system

被引:43
作者
Ge, ZM [1 ]
Cheng, JW [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Mech Engn, Hsinchu 300, Taiwan
关键词
D O I
10.1016/j.chaos.2004.09.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Chaotic anticontrol and chaos synchronization of brushless DC motor system are studied in this paper. Nondimensional dynamic equations of three time scale brushless DC motor system are presented. Using numerical results, such as phase diagram, bifurcation diagram, and Lyapunov exponent, periodic and chaotic motions can be observed. Then, chaos synchronization of two identical systems via additional inputs and Lyapunov stability theory are studied. And further, the parameter of the system is traced via adaptive control and random optimization method. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:597 / 616
页数:20
相关论文
共 10 条
[1]  
Chen G., 1998, CHAOS ORDER
[2]   Synchronization of an uncertain unified chaotic system via adaptive control [J].
Chen, SH ;
Lü, JH .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :643-647
[3]   A simple global synchronization criterion for coupled chaotic systems [J].
Jiang, GP ;
Tang, WKS ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2003, 15 (05) :925-935
[4]   Modification for synchronization of Rossler and Chen chaotic systems [J].
Li, Z ;
Han, CZ ;
Shi, SJ .
PHYSICS LETTERS A, 2002, 301 (3-4) :224-230
[5]  
NEMATI H, 1994, IEEE T CIRCUITS SYST, V41, P40
[6]  
NEMATI H, 1993, IEEE IND APPL SOC AN, V1, P51
[7]  
Ott E., 2002, CHAOS DYNAMIC SYSTEM
[8]   Parameter evaluation from time sequences using chaos synchronization [J].
Sakaguchi, H .
PHYSICAL REVIEW E, 2002, 65 (02) :1-027201
[9]   CONTROLLING CHAOS IN THE BRAIN [J].
SCHIFF, SJ ;
JERGER, K ;
DUONG, DH ;
CHANG, T ;
SPANO, ML ;
DITTO, WL .
NATURE, 1994, 370 (6491) :615-620
[10]   Synchronizing chaotic systems using backstepping design [J].
Tan, XH ;
Zhang, JY ;
Yang, YR .
CHAOS SOLITONS & FRACTALS, 2003, 16 (01) :37-45