A framework for discrete integral transformations II - The 2D discrete radon transform

被引:46
作者
Averbuch, A. [1 ]
Coifman, R. R. [2 ]
Donoho, D. L. [3 ]
Israeli, M. [4 ]
Shkolnisky, Y. [2 ]
Sedelnikov, I. [1 ]
机构
[1] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[4] Technion Israel Inst Technol, Fac Comp Sci, IL-32000 Haifa, Israel
关键词
radon transform; projection-slice theorem; linogram; slant stack; pseudopolar Fourier transform; trigonometric interpolation; shearing of digital images;
D O I
10.1137/060650301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Although naturally at the heart of many fundamental physical computations, and potentially useful in many important image processing tasks, the Radon transform lacks a coherent discrete definition for two-dimensional (2D) discrete images which is algebraically exact, invertible, and rapidly computable. We de. ne a notion of 2D discrete Radon transforms for 2D discrete images, which is based on summation along lines of absolute slope less than 1. Values at nongrid locations are defined using trigonometric interpolation on a zero-padded grid. Our definition is shown to be geometrically faithful: the summation avoids wrap-around effects. Our proposal uses a special collection of lines in R-2 for which the transform is rapidly computable and invertible. We describe a fast algorithm using O(NlogN) operations, where N = n(2) is the number of pixels in the image. The fast algorithm exploits a discrete projection-slice theorem, which associates the discrete Radon transform with the pseudopolar Fourier transform [A. Averbuch et al., SIAM J. Sci. Comput., 30 (2008), pp. 764-784]. Our definition for discrete images converges to a natural continuous counterpart with increasing refinement.
引用
收藏
页码:785 / 803
页数:19
相关论文
共 19 条
[1]   A framework for discrete integral transformations I - The pseudopolar Fourier transform [J].
Averbuch, A. ;
Coifman, R. R. ;
Donoho, D. L. ;
Israeli, M. ;
Shkolnisky, Y. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02) :764-784
[2]  
AVERBUCH A, 2001, UNPUB FAST SLANT STA
[3]   DISCRETE RADON-TRANSFORM [J].
BEYLKIN, G .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1987, 35 (02) :162-172
[4]   A fast discrete approximation algorithm for the Radon transform [J].
Brady, ML .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :107-119
[5]   Fast calculation of multiple line integrals [J].
Brandt, A ;
Dym, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (04) :1417-1429
[6]   A fast and accurate multilevel inversion of the radon transform [J].
Brandt, A ;
Mann, J ;
Brodski, M ;
Galun, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (02) :437-462
[7]   Fast discrete curvelet transforms [J].
Candes, Emmanuel ;
Demanet, Laurent ;
Donoho, David ;
Ying, Lexing .
MULTISCALE MODELING & SIMULATION, 2006, 5 (03) :861-899
[8]  
Deans S.R., 1993, RADON TRANSFORM SOME
[9]  
DONOHO DL, 2003, AVELETS, V10, P1
[10]   IMAGE-RECONSTRUCTION FROM LINOGRAMS - IMPLEMENTATION AND EVALUATION [J].
EDHOLM, P ;
HERMAN, GT ;
ROBERTS, DA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1988, 7 (03) :239-246