Fluorescent Proton Sensors Based on Energy Transfer

被引:68
作者
Thivierge, Cliferson [1 ]
Han, Junyan [1 ]
Jenkins, Roxanne M. [1 ]
Burgess, Kevin [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77841 USA
基金
美国国家卫生研究院;
关键词
EXCITATION TRANSFER; TRANSFER CASSETTES; RATE EXPRESSIONS; ELECTRONIC FACTORS; QUANTUM YIELD; LIVING CELLS; BODIPY DYES; PH; MECHANISMS; CHEMISTRY;
D O I
10.1021/jo2005654
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Photophysical data and orbital energy levels (from electrochemistry) were compared for molecules with the same BODIPY acceptor part (red) and perpendicularly oriented xanthene or BODIPY donor fragments (green). Transfer of energy, hence the photophysical properties of the cassettes, including the pH dependent fluorescence in the xanthene-containing molecules, correlates with the relative energies of the frontier orbitals in these systems. Intracellular sensing of protons is often achieved via sensors that switch off completely at certain pH values, but probes of this type are not easy to locate inside cells in their "off-state". A communication from these laboratories (J. Am. Chem. Soc., 2009, 131, 1642-3) described how the energy transfer cassette 1 could be used for intracellular imaging of pH. This probe is fluorescent whatever the pH, but its exact photophysical properties are governed by the protonation states of the xanthene donors. This work was undertaken to further investigate correlations between structure, photophysical properties, and pH for energy transfer cassettes. To achieve this, three other cassettes 2-4 were prepared: another one containing pH-sensitive xanthene donors (2) and two "control cassettes" that each have two BODIPY-based donors (3 and 4). Both the cassettes 1 and 2 with xanthene-based donors fluoresce red under slightly acidic conditions (pH <similar to 6) and green when the medium is more basic (>similar to 7), whereas the corresponding cassettes with BODIPY donors give almost complete energy transfer regardless of pH. The cassettes that have BODIPY donors, by contrast, show no significant fluorescence from the donor parts, but the overall quantum yields of the cassettes when excited at the donor (observation of acceptor fluorescence) are high (ca. 0.6 and 0.9). Electrochemical measurements were performed to elucidate orbital energy level differences between the pH-fluorescence profiles of cassettes with xanthene donors, relative to the two with BODIPY donors. These studies confirm energy transfer in the cassettes is dramatically altered by analytes that perturb relative orbital levels. Energy transfer cassettes with distinct fluorescent donor and acceptor units provide a new, and potentially useful, approach to sensors for biomedical applications.
引用
收藏
页码:5219 / 5228
页数:10
相关论文
共 59 条
[1]   Synthesis and conformational switching of partially and differentially bridged resorcin[4]arenes bearing fluorescent dye labels - Preliminary communication [J].
Azov, VA ;
Diederich, F ;
Lill, Y ;
Hecht, B .
HELVETICA CHIMICA ACTA, 2003, 86 (06) :2149-2155
[2]   Measurement of cytosolic and mitochondrial pH in living cells during reversible metabolic inhibition [J].
Balut, C. ;
VandeVen, M. ;
Despa, S. ;
Lambrichts, I. ;
Ameloot, M. ;
Steels, P. ;
Smets, I. .
KIDNEY INTERNATIONAL, 2008, 73 (02) :226-232
[3]   Development of a novel GFP-based ratiometric excitation and emission pH indicator for intracellular studies [J].
Bizzarri, R ;
Arcangeli, C ;
Arosio, D ;
Ricci, F ;
Faraci, P ;
Cardarelli, F ;
Beltram, F .
BIOPHYSICAL JOURNAL, 2006, 90 (09) :3300-3314
[4]   Tailoring the properties of boron-dipyrromethene dyes with acetylenic functions at the 2,6,8 and 4-B substitution positions [J].
Bonardi, Laure ;
Ulrich, Gilles ;
Ziessel, Raymond .
ORGANIC LETTERS, 2008, 10 (11) :2183-2186
[5]   pH sensing in living cells using fluorescent microspheres [J].
Bradley, Mark ;
Alexander, Lois ;
Duncan, Karen ;
Chennaoui, Mourad ;
Jones, Anita C. ;
Sanchez-Martin, Rosario M. .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2008, 18 (01) :313-317
[6]   A pH sensitive fluorescent cyanine dye for biological applications [J].
Briggs, MS ;
Burns, DD ;
Cooper, ME ;
Gregory, SJ .
CHEMICAL COMMUNICATIONS, 2000, (23) :2323-2324
[7]  
BURGESS K, 2005, Patent No. 20050032120
[8]   Energy transfer cassettes based on BODIPY® dyes [J].
Burghart, A ;
Thoresen, LH ;
Chen, J ;
Burgess, K ;
Bergström, F ;
Johansson, LBÅ .
CHEMICAL COMMUNICATIONS, 2000, (22) :2203-2204
[9]   Luminescent sensors and switches in the early 21st century [J].
Callan, JF ;
de Silva, AP ;
Magri, DC .
TETRAHEDRON, 2005, 61 (36) :8551-8588
[10]   Chemical redox agents for organometallic chemistry [J].
Connelly, NG ;
Geiger, WE .
CHEMICAL REVIEWS, 1996, 96 (02) :877-910