Hydroxide oxidation and peroxide formation at embedded binuclear transition metal sites; TM = Cr, Mn, Fe, Co

被引:24
作者
Busch, M. [2 ]
Ahlberg, E. [2 ]
Panas, I. [1 ]
机构
[1] Chalmers, Dept Chem & Biotechnol, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, Dept Chem, S-41296 Gothenburg, Sweden
关键词
NANORODS MODIFIED ELECTRODES; DENSITY-FUNCTIONAL THEORY; O BOND FORMATION; OXYGEN EVOLUTION; WATER-OXIDATION; ELECTROCATALYTIC PROPERTIES; REDOX POTENTIALS; ALKALINE-MEDIUM; 1ST PRINCIPLES; MANGANESE;
D O I
10.1039/c1cp20487d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Key steps in electro-catalytic water oxidation on binuclear Transition Metal (TM) sites are addressed. These comprise (a) two one-electron oxidation steps of TM-OH moieties to form the corresponding two TMQO oxy-groups, and (b) a chemical step whereby the two oxy-species form a TM-O-O-TM peroxy-bridge. A test rig representing a generic low crystal field oxide support is described and employed. The energetics for homo-nuclear Cr(III-V), Mn(III-V), Fe(II-IV) and Co(II-IV) sites are compared. The uniqueness of the tyrosine/tyrosyl-radical (TyrOH/TyrO(center dot)) reference potential for driving the oxidation steps is demonstrated. The oxidation of adsorbed TM-OH moieties on binuclear Mn and Co candidates requires an overpotential of approximately 0.5 V relative to the chosen reference potential. Correspondingly, the subsequent O-O bond formation becomes strongly exothermic, of the order of 1 eV. The hydroxide oxidation steps on binuclear CrCr and FeFe systems are, in total, exothermic by 1.21 and 0.61 eV, respectively, relative to the TyrOH/TyrO(center dot) reference potential. Consequently, the chemical step for transforming the TMQO moieties to the peroxo species is found to be endothermic by the order of 0.7 eV. Based on these findings, a catalyst containing one TM from each class is suggested. The validity of this concept is demonstrated for the FeCo binuclear site. The results are discussed in the context of experimental observations, which display a preference for mixed oxide systems.
引用
收藏
页码:15062 / 15068
页数:7
相关论文
共 50 条
[1]  
AHLBERG E, 1992, CHEM NUCL REACTOR SY, V6, P278
[2]   Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface [J].
Asakura, K ;
Nagahiro, H ;
Ichikuni, N ;
Iwasawa, Y .
APPLIED CATALYSIS A-GENERAL, 1999, 188 (1-2) :313-324
[3]   Nanoscale design to enable the revolution in renewable energy [J].
Baxter, Jason ;
Bian, Zhixi ;
Chen, Gang ;
Danielson, David ;
Dresselhaus, Mildred S. ;
Fedorov, Andrei G. ;
Fisher, Timothy S. ;
Jones, Christopher W. ;
Maginn, Edward ;
Kortshagen, Uwe ;
Manthiram, Arumugam ;
Nozik, Arthur ;
Rolison, Debra R. ;
Sands, Timothy ;
Shi, Li ;
Sholl, David ;
Wu, Yiying .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (06) :559-588
[4]  
Beer H., 1958, MAT STUDIO RELEASE 5, Patent No. 710,551
[5]   Half-Sandwich Iridium Complexes for Homogeneous Water-Oxidation Catalysis [J].
Blakemore, James D. ;
Schley, Nathan D. ;
Balcells, David ;
Hull, Jonathan F. ;
Olack, Gerard W. ;
Incarvito, Christopher D. ;
Eisenstein, Odile ;
Brudvig, Gary W. ;
Crabtree, Robert H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (45) :16017-16029
[6]   MECHANISM OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (15) :2960-2971
[7]   Electrocatalytic oxygen evolution from water on a Mn(III-V) dimer model catalyst-A DFT perspective [J].
Busch, M. ;
Ahlberg, E. ;
Panas, I. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (33) :15069-15076
[8]  
BUSCH M, ACTIVATION ENERGIES
[9]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[10]   Insights into current limitations of density functional theory [J].
Cohen, Aron J. ;
Mori-Sanchez, Paula ;
Yang, Weitao .
SCIENCE, 2008, 321 (5890) :792-794