Negative differential resistance in electrochemically self-assembled layered nanostructures
被引:55
作者:
Switzer, JA
论文数: 0引用数: 0
h-index: 0
机构:
Univ Missouri, Dept Chem, Rolla, MO 65409 USAUniv Missouri, Dept Chem, Rolla, MO 65409 USA
Switzer, JA
[1
]
Maune, BM
论文数: 0引用数: 0
h-index: 0
机构:Univ Missouri, Dept Chem, Rolla, MO 65409 USA
Maune, BM
Raub, ER
论文数: 0引用数: 0
h-index: 0
机构:Univ Missouri, Dept Chem, Rolla, MO 65409 USA
Raub, ER
Bohannan, EW
论文数: 0引用数: 0
h-index: 0
机构:Univ Missouri, Dept Chem, Rolla, MO 65409 USA
Bohannan, EW
机构:
[1] Univ Missouri, Dept Chem, Rolla, MO 65409 USA
[2] Univ Missouri, Grad Ctr Mat Res, Rolla, MO 65409 USA
来源:
JOURNAL OF PHYSICAL CHEMISTRY B
|
1999年
/
103卷
/
03期
关键词:
D O I:
10.1021/jp983911s
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Resonant tunneling devices are used for ultrahigh-speed applications. In this work, tunnel junctions based on copper metal (Cu) and cuprous oxide (Cu2O) are electrochemically self-assembled from aqueous solution in an oscillating system. The Cu2O layer thickness (L) is tuned from 0.8 to 2.8 nm by simply changing the applied current density. The layered structures show sharp negative differential resistance (NDR) signatures at room temperature in perpendicular transport measurements, and the NDR maximum shifts to higher bias with a 1/L-2 dependence as the Cu2O layer is made thinner. The results are consistent with resonant tunneling from Cu into hole states in the valence band of quantum-confined Cu2O through thin space-charge regions on each side of the Cu2O.