Effect of graphene nanosheet addition on the electrochemical performance of anode materials for lithium-ion batteries

被引:42
作者
Guo, Peng [1 ,2 ]
Song, Huaihe [1 ]
Chen, Xiaohong [1 ]
Ma, Lulu [1 ,3 ]
Wang, Guohua [1 ]
Wang, Feng [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Key Lab Carbon Fiber & Funct Polymers, Minist Educ, Beijing 100029, Peoples R China
[2] SINOPEC, Beijing Res Inst Chem Ind, Beijing 100013, Peoples R China
[3] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA
关键词
Graphene nanosheets; Conducting agent; Cycle performance; Rate performance; AC impedance; MULTIWALLED CARBON NANOTUBES; REVERSIBLE CAPACITY; BLACK DISTRIBUTION; LI STORAGE; GRAPHITE; CATHODES; OXIDE; ELECTRODES; INTERCALATION; STABILITY;
D O I
10.1016/j.aca.2010.12.033
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The structure and electronic properties of graphene nanosheet (GNS) render it a promising conducting agent in a lithium-ion battery. A graphite electrode loaded with GNS exhibits superior electrochemical properties including higher rate performance, increased specific capacity and better cycle performance compared with that obtained by adding the traditional conducting agent-acetylene black. The high-quality sp(2) carbon lattice, quasi-two-dimensional crystal structure and high aspect ratio of GNS provide the basis for a continuous conducting network to counter the decrease in electrode conductivity with increasing number of cycles, and guarantee efficient and fast electronic transport throughout the anode. Effects of GNS loading content on the electrochemical properties of graphite electrode are investigated and results indicate that the amount of conductive additives needed is decreased by using GNS. The kinetics and mechanism of lithium-storage for a GNS-loaded electrode are explored using a series of electrochemical testing techniques. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 61 条
[1]   EPR, NMR, and electrochemical studies of surface-modified carbon microbeads [J].
Alcántara, R ;
Ortiz, GF ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2293-2301
[2]   Microstructure and intercalation properties of petrol cokes obtained at 1400 degrees C [J].
Alcantara, R ;
JimenezMateos, JM ;
Lavela, P ;
Morales, J ;
Tirado, JL .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1996, 39 (03) :216-223
[3]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   ELECTRICALLY CONDUCTIVE GRADES OF CARBON-BLACK - STRUCTURE AND PROPERTIES [J].
BOURRAT, X .
CARBON, 1993, 31 (02) :287-302
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]   Effect of binary conductive agents in LiCoO2 cathode on performances of lithium ion polymer battery [J].
Cheon, SE ;
Kwon, CW ;
Kim, DB ;
Hong, SJ ;
Kim, HT ;
Kim, SW .
ELECTROCHIMICA ACTA, 2000, 46 (04) :599-605
[10]   DEPENDENCE OF THE ELECTROCHEMICAL INTERCALATION OF LITHIUM IN CARBONS ON THE CRYSTAL-STRUCTURE OF THE CARBON [J].
DAHN, JR ;
SLEIGH, AK ;
SHI, H ;
REIMERS, JN ;
ZHONG, Q ;
WAY, BM .
ELECTROCHIMICA ACTA, 1993, 38 (09) :1179-1191