Deformed coherent and squeezed states of multiparticle processes

被引:9
作者
Aneva, B [1 ]
机构
[1] CERN, Div Theory, CH-1211 Geneva 23, Switzerland
[2] LMU Univ, Dept Phys, D-80333 Munich, Germany
[3] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, BU-1784 Sofia, Bulgaria
来源
EUROPEAN PHYSICAL JOURNAL C | 2003年 / 31卷 / 03期
关键词
D O I
10.1140/epjc/s2003-01335-9
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Deformed squeezed states are introduced as the q-analogues of the conventional undeformed harmonic oscillator algebra squeezed states. It is shown that the boundary vectors in the matrix-product states approach to multiparticle diffusion processes are deformed coherent or squeezed states of a deformed harmonic oscillator algebra. A deformed squeezed and coherent-states solution to the n-species stochastic diffusion boundary problem is proposed and studied.
引用
收藏
页码:403 / 414
页数:12
相关论文
共 23 条
[1]   The noncommutative space of stochastic diffusion systems [J].
Aneva, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (04) :859-877
[2]   Exact solution of a partially asymmetric exclusion model using a deformed oscillator algebra [J].
Blythe, RA ;
Evans, MR ;
Colaiori, F ;
Essler, FHL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (12) :2313-2332
[3]   SQUEEZING AND QUANTUM GROUPS [J].
CELEGHINI, E ;
RASETTI, M ;
VITIELLO, G .
PHYSICAL REVIEW LETTERS, 1991, 66 (16) :2056-2059
[4]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[5]   MULTIPARAMETER ASSOCIATIVE GENERALIZATIONS OF CANONICAL COMMUTATION RELATIONS AND QUANTIZED PLANES [J].
FAIRLIE, DB ;
ZACHOS, CK .
PHYSICS LETTERS B, 1991, 256 (01) :43-49
[6]   GEOMETRY OF SYMMETRIZED STATES [J].
GILMORE, R .
ANNALS OF PHYSICS, 1972, 74 (02) :391-&
[7]  
GLAUBER R, 1963, PHYS REV, V130, P188
[8]  
ISAEV A, 2001, CONDMATT0103603
[9]   ON COHERENT STATES FOR THE SIMPLEST QUANTUM GROUPS [J].
JURCO, B .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 21 (01) :51-58
[10]   GENERALIZED Q-BOSONS AND THEIR SQUEEZED STATES [J].
KATRIEL, J ;
SOLOMON, AI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (09) :2093-2105