A version of Thirring's approach to the Kolmogorov-Arnold-Moser theorem for quadratic Hamiltonians with degenerate twist

被引:9
作者
Chandre, C [1 ]
Jauslin, HR [1 ]
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21011 Dijon, France
关键词
D O I
10.1063/1.532599
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a proof of the Kolmogorov-Arnold-Moser (KAM) theorem on the existence of invariant tori for weakly perturbed Hamiltonian systems, based on Thirring's approach for Hamiltonians that are quadratic in the action variables. The main point of this approach is that the iteration of canonical transformations on which the proof is based stays within the space of quadratic Hamiltonians. We show that Thirring's proof for nondegenerate Hamiltonians can be adapted to Hamiltonians with degenerate twist. This case, in fact, drastically simplifies Thirring's proof. (C) 1998 American Institute of Physics. [S0022-2488(98)00611-2].
引用
收藏
页码:5856 / 5865
页数:10
相关论文
共 21 条
[11]  
GALLAVOTTI G, 1983, SCALING SELF SIMILAR
[12]  
Gallavotti G., 1983, ELEMENTS MECH
[13]  
Goldstein H, 1980, CLASSICAL MECH
[14]   Kolmogorov-Arnold-Moser-renormalization-group analysis of stability in Hamiltonian flows [J].
Govin, M ;
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :3881-3884
[15]  
JAUSLIN HR, 1993, 2 GRAN LECT COMP PHY
[16]  
Kolmogorov A. N., 1954, Dokl. Akad. Nauk SSSR, V98, P527, DOI DOI 10.1007/BFB0021737
[17]  
Kolmogorov A.N., 1979, Lecture Notes in Phys., V93, P51
[18]  
Moser J., 1962, NACHR AKAD WISS GOTT, VII, P1
[19]  
PAUL RD, ARCH MP
[20]  
RUSSMANN H, 1990, MATHITS APPL, V59