Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers

被引:627
作者
Deng, Yehao [1 ]
Peng, Edwin [1 ]
Shao, Yuchuan [1 ]
Xiao, Zhengguo [1 ]
Dong, Qingfeng [1 ]
Huang, Jinsong [1 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
VAPOR-DEPOSITION; PERFORMANCE; PROGRESS; POLYMER; DEVICES;
D O I
10.1039/c4ee03907f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pinhole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80-250 mu m in 1.5-2 mu m thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4, N4'-bis(4-(6-((3-ethyloxetan-3-yl) methoxy) hexyl) phenyl)-N4, N4'-diphenylbiphenyl-4,4'-diamine covered ITO substrates. Interestingly, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 mu m which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.
引用
收藏
页码:1544 / 1550
页数:7
相关论文
共 31 条
[1]   Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications [J].
Baikie, Tom ;
Fang, Yanan ;
Kadro, Jeannette M. ;
Schreyer, Martin ;
Wei, Fengxia ;
Mhaisalkar, Subodh G. ;
Graetzel, Michael ;
White, Tim J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) :5628-5641
[2]   Low-temperature processed meso-superstructured to thin-film perovskite solar cells [J].
Ball, James M. ;
Lee, Michael M. ;
Hey, Andrew ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1739-1743
[3]   Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition [J].
Barrows, Alexander T. ;
Pearson, Andrew J. ;
Kwak, Chan Kyu ;
Dunbar, Alan D. F. ;
Buckley, Alastair R. ;
Lidzey, David G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2944-2950
[4]  
Bi C., IN PRESS
[5]   Current progress and future perspectives for organic/inorganic perovskite solar cells [J].
Boix, Pablo P. ;
Nonomura, Kazuteru ;
Mathews, Nripan ;
Mhaisalkar, Subodh G. .
MATERIALS TODAY, 2014, 17 (01) :16-23
[6]   Progress in flexible dye solar cell materials, processes and devices [J].
Brown, T. M. ;
De Rossi, F. ;
Di Giacomo, F. ;
Mincuzzi, G. ;
Zardetto, V. ;
Reale, A. ;
Di Carlo, A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10788-10817
[7]   Towards industrialization of polymer solar cells: material processing for upscaling [J].
Burgues-Ceballos, Ignasi ;
Stella, Marco ;
Lacharmoise, Paul ;
Martinez-Ferrero, Eugenia .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (42) :17711-17722
[8]  
Diao Y, 2013, NAT MATER, V12, P665, DOI [10.1038/NMAT3650, 10.1038/nmat3650]
[9]  
Dong Q., 2015, ENERGY ENV SCI
[10]   General Working Principles of CH3NH3PbX3 Perovskite Solar Cells [J].
Gonzalez-Pedro, Victoria ;
Juarez-Perez, Emilio J. ;
Arsyad, Waode-Sukmawati ;
Barea, Eva M. ;
Fabregat-Santiago, Francisco ;
Mora-Sero, Ivan ;
Bisquert, Juan .
NANO LETTERS, 2014, 14 (02) :888-893