Accounting for Experimental Noise Reveals That mRNA Levels, Amplified by Post-Transcriptional Processes, Largely Determine Steady-State Protein Levels in Yeast

被引:130
作者
Csardi, Gabor [1 ]
Franks, Alexander [1 ]
Choi, David S. [1 ]
Airoldi, Edoardo M. [1 ,2 ]
Drummond, D. Allan [3 ,4 ]
机构
[1] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[2] Broad Inst Harvard & MIT, Cambridge, MA USA
[3] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
来源
PLOS GENETICS | 2015年 / 11卷 / 05期
基金
美国国家科学基金会;
关键词
GENE-EXPRESSION; SACCHAROMYCES-CEREVISIAE; PROFILING REVEALS; ABUNDANCE; QUANTIFICATION; TRANSCRIPTOME; TRANSLATION; SELECTION; SCALE; REGRESSION;
D O I
10.1371/journal.pgen.1005206
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cells respond to their environment by modulating protein levels through mRNA transcription and post-transcriptional control. Modest observed correlations between global steady-state mRNA and protein measurements have been interpreted as evidence that mRNA levels determine roughly 40% of the variation in protein levels, indicating dominant post-transcriptional effects. However, the techniques underlying these conclusions, such as correlation and regression, yield biased results when data are noisy, missing systematically, and collinear-properties of mRNA and protein measurements-which motivated us to revisit this subject. Noise-robust analyses of 24 studies of budding yeast reveal that mRNA levels explain more than 85% of the variation in steady-state protein levels. Protein levels are not proportional to mRNA levels, but rise much more rapidly. Regulation of translation suffices to explain this nonlinear effect, revealing post-transcriptional amplification of, rather than competition with, transcriptional signals. These results substantially revise widely credited models of protein-level regulation, and introduce multiple noise-aware approaches essential for proper analysis of many biological phenomena.
引用
收藏
页数:32
相关论文
共 85 条
[31]   Correlation between protein and mRNA abundance in yeast [J].
Gygi, SP ;
Rochon, Y ;
Franza, BR ;
Aebersold, R .
MOLECULAR AND CELLULAR BIOLOGY, 1999, 19 (03) :1720-1730
[32]   Dissecting the regulatory circuitry of a eukaryotic genome [J].
Holstege, FCP ;
Jennings, EG ;
Wyrick, JJ ;
Lee, TI ;
Hengartner, CJ ;
Green, MR ;
Golub, TR ;
Lander, ES ;
Young, RA .
CELL, 1998, 95 (05) :717-728
[33]   Random measurement error and regression dilution bias [J].
Hutcheon, Jennifer A. ;
Chiolero, Arnaud ;
Hanley, James A. .
BMJ-BRITISH MEDICAL JOURNAL, 2010, 340 :1402-1406
[34]   GENOME-WIDE TRANSLATIONAL PROFILING BY RIBOSOME FOOTPRINTING [J].
Ingolia, Nicholas T. .
METHODS IN ENZYMOLOGY, VOL 470: GUIDE TO YEAST GENETICS:: FUNCTIONAL GENOMICS, PROTEOMICS, AND OTHER SYSTEMS ANALYSIS, 2ND EDITION, 2010, 470 :119-142
[35]   Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling [J].
Ingolia, Nicholas T. ;
Ghaemmaghami, Sina ;
Newman, John R. S. ;
Weissman, Jonathan S. .
SCIENCE, 2009, 324 (5924) :218-223
[36]   COORDINATION OF GROWTH WITH CELL-DIVISION IN YEAST SACCHAROMYCES-CEREVISIAE [J].
JOHNSTON, GC ;
PRINGLE, JR ;
HARTWELL, LH .
EXPERIMENTAL CELL RESEARCH, 1977, 105 (01) :79-98
[37]   Dynamic profiling of the protein life cycle in response to pathogens [J].
Jovanovic, Marko ;
Rooney, Michael S. ;
Mertins, Philipp ;
Przybylski, Dariusz ;
Chevrier, Nicolas ;
Satija, Rahul ;
Rodriguez, Edwin H. ;
Fields, Alexander P. ;
Schwartz, Schraga ;
Raychowdhury, Raktima ;
Mumbach, Maxwell R. ;
Eisenhaure, Thomas ;
Rabani, Michal ;
Gennert, Dave ;
Lu, Diana ;
Delorey, Toni ;
Weissman, Jonathan S. ;
Carr, Steven A. ;
Hacohen, Nir ;
Regev, Aviv .
SCIENCE, 2015, 347 (6226)
[38]   Coding-Sequence Determinants of Gene Expression in Escherichia coli [J].
Kudla, Grzegorz ;
Murray, Andrew W. ;
Tollervey, David ;
Plotkin, Joshua B. .
SCIENCE, 2009, 324 (5924) :255-258
[39]   A dynamic model of proteome changes reveals new roles for transcript alteration in yeast [J].
Lee, M. Violet ;
Topper, Scott E. ;
Hubler, Shane L. ;
Hose, James ;
Wenger, Craig D. ;
Coon, Joshua J. ;
Gasch, Audrey P. .
MOLECULAR SYSTEMS BIOLOGY, 2011, 7
[40]   Tackling the widespread and critical impact of batch effects in high-throughput data [J].
Leek, Jeffrey T. ;
Scharpf, Robert B. ;
Bravo, Hector Corrada ;
Simcha, David ;
Langmead, Benjamin ;
Johnson, W. Evan ;
Geman, Donald ;
Baggerly, Keith ;
Irizarry, Rafael A. .
NATURE REVIEWS GENETICS, 2010, 11 (10) :733-739