Fuzzy structural analysis using α-level optimization

被引:270
作者
Möller, B [1 ]
Graf, W [1 ]
Beer, M [1 ]
机构
[1] Dresden Univ Technol, Dept Civil Engn, Inst Struct Anal, D-01062 Dresden, Germany
关键词
D O I
10.1007/s004660000204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper new concepts and developments are presented for structural analysis involving uncertain parameters. Based on a classification of the uncertainties in structural analysis the uncertainty "fuzziness" is identified and its quantification is demonstrated. On the basis of fuzzy set theory a general method for fuzzy structural analysis is developed and formulated in terms of the alpha -level optimization with the application of a modified evolution strategy. Every known analysis algorithm for the realistic simulation of load-bearing behavior may be applied in the fuzzy structural analysis in the sense of a deterministic fundamental solution. By way of example, geometrically and physically nonlinear algorithms are adopted in the presented study as a deterministic fundamental solution for the analysis of steel and reinforced concrete structures. The paper also describes coupling between alpha -level optimization and the deterministic fundamental solution.
引用
收藏
页码:547 / 565
页数:19
相关论文
共 47 条
[31]  
MOLLER B, 1997, P 2 INT ICSC S FUZZ, P345
[32]  
MULLER H, 1985, NUMERISCHE SIMULATIO
[33]  
MULLER H, 1998, LEHRSTUHL STATIK
[34]  
MULLER H, 1996, 6 FACHT BAUST BAUPR
[35]   FUZZY RANDOM-VARIABLES [J].
PURI, ML ;
RALESCU, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :409-422
[36]  
RACKWITZ R, 1999, ZUVERLASSIGKEITSBETR, pT2847
[38]  
Soize C., 1995, COMPUT STRUCT, V58, P901
[39]   Fuzzy stochastic fuzzy time series and its models [J].
Song, Q ;
Leland, RP ;
Chissom, BS .
FUZZY SETS AND SYSTEMS, 1997, 88 (03) :333-341
[40]  
Spaethe G., 1992, SICHERHEIT TRAGENDER