Endocytic regulation of Notch activation and down-regulation (Review)

被引:36
作者
Wilkin, MB [1 ]
Baron, M [1 ]
机构
[1] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
基金
英国生物技术与生命科学研究理事会;
关键词
Notch; endocytosis; ubiquitin; trafficking;
D O I
10.1080/09687860500129778
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Notch receptor signalling plays a central role in development and its misfunction has been linked to a number of diseases. In the cannonical Notch signalling pathway, ligand binding to Notch activates a series of proteolytic cleavages that release the Notch intracellular domain for trafficking to the nucleus, where it activates the transcription factor, Suppressor of Hairless (Su(H)). A number of recent papers have demonstrated the importance of endocytic trafficking of Notch and its ligands for both the activation and the down-regulation of the Notch receptor. These reports highlight uncertainty regarding the whereabouts in the cell where Notch activation occurs, and the form of the ligand that can induce signalling. In this review we speculate that, decision points between alternative trafficking pathways represent important regulatory nodes that may allow Notch signalling levels to be modulated by other developmental signals, providing context-dependency to Notch activation. We also review data that suggest that key proteolytic events, associated with Notch activation, may occur within the endocytic pathway or require prior endocytosis and recycling of Notch and its ligands to the cell surface. Sorting within the endocytic pathway, regulated by several different ubiquitin ligase proteins, may be involved in ensuring whether ligand and receptor are competent to signal. Furthermore, the utilisation of an alternative mechanism of Notch signalling, independent of Su( H), may depend on driving endocytic Notch into a specific compartment, in response to the activity of the ring finger domain protein, Deltex.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 67 条
[1]   For the long run: Maintaining germinal niches in the adult brain [J].
Alvarez-Buylla, A ;
Lim, DA .
NEURON, 2004, 41 (05) :683-686
[2]   CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? [J].
Arias, AM ;
Zecchini, V ;
Brennan, K .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2002, 12 (05) :524-533
[3]   Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells [J].
Barbero, P ;
Bittova, L ;
Pfeffer, SR .
JOURNAL OF CELL BIOLOGY, 2002, 156 (03) :511-518
[4]   An overview of the Notch signalling pathway [J].
Baron, M .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2003, 14 (02) :113-119
[5]   Multiple levels of Notch signal regulation (Review) [J].
Baron, M ;
Aslam, H ;
Flasza, M ;
Fostier, M ;
Higgs, JE ;
Mazaleyrat, SL ;
Wilkin, MB .
MOLECULAR MEMBRANE BIOLOGY, 2002, 19 (01) :27-38
[6]   The endocytic protein α-adaptin is required for numb-mediated asymmetric cell division in Drosophila [J].
Berdnik, D ;
Török, T ;
González-Gaitán, M ;
Knoblich, JA .
DEVELOPMENTAL CELL, 2002, 3 (02) :221-231
[7]   Signals for sorting of transmembrane proteins to endosomes and lysosomes [J].
Bonifacino, JS ;
Traub, LM .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :395-447
[8]   Notching up another pathway [J].
Brennan, K ;
Gardner, P .
BIOESSAYS, 2002, 24 (05) :405-410
[9]   A novel proteolytic cleavage involved in Notch signaling:: The role of the disintegrin-metalloprotease TACE [J].
Brou, C ;
Logeat, F ;
Gupta, N ;
Bessia, C ;
LeBail, O ;
Doedens, JR ;
Cumano, A ;
Roux, P ;
Black, RA ;
Israël, A .
MOLECULAR CELL, 2000, 5 (02) :207-216
[10]   Notch-mediated restoration of regenerative potential to aged muscle [J].
Conboy, IM ;
Conboy, MJ ;
Smythe, GM ;
Rando, TA .
SCIENCE, 2003, 302 (5650) :1575-1577