Structural basis for light activation of a chloroplast enzyme: The structure of sorghum NADP-malate dehydrogenase in its oxidized form

被引:76
作者
Johansson, K
Ramaswamy, S
Saarinen, M
Lemaire-Chamley, M
Issakidis-Bourguet, E
Miginiac-Maslow, M
Eklund, H
机构
[1] Swedish Univ Agr Sci, Dept Mol Biol, Ctr Biomed, S-75124 Uppsala, Sweden
[2] Univ Paris Sud, Inst Biotechnol Plantes, CNRS, UMR 8618, F-91405 Orsay, France
关键词
D O I
10.1021/bi982876c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Some key chloroplast enzymes are activated by light via a ferredoxin-thioredoxin reduction system which reduces disulfide bridges in the enzymes. We describe for the first time the structural basis for the redox activation of a chloroplast enzyme, the NADP-dependent malate dehydrogenase (MDH) from Sorghum vulgare whose structure has been determined and refined at 2.4 Angstrom resolution. In addition to the normal structural components of MDHs, the enzyme exhibits extensions at both the N- and C-termini, each of which contains a regulatory disulfide bridge which must be reduced for activation. The N-terminal disulfide motif is inserted in a cleft between the two subunits of the dimer, thereby locking the domains in each subunit, The C-terminal disulfide keeps the C-terminal residues tight to the enzyme surface and blocks access to the active site. Reduction of the N-terminal disulfide would release the stopper between the domains and give the enzyme the necessary flexibility. Simultaneous reduction of the C-terminal disulfide would free the C-terminal residues from binding to the enzyme and make the active site accessible.
引用
收藏
页码:4319 / 4326
页数:8
相关论文
共 36 条
[1]   REDOX REGULATION OF FOS AND JUN DNA-BINDING ACTIVITY INVITRO [J].
ABATE, C ;
PATEL, L ;
RAUSCHER, FJ ;
CURRAN, T .
SCIENCE, 1990, 249 (4973) :1157-1161
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[4]   REGULATION OF CO2 ASSIMILATION IN OXYGENIC PHOTOSYNTHESIS - THE FERREDOXIN THIOREDOXIN SYSTEM - PERSPECTIVE ON ITS DISCOVERY, PRESENT STATUS, AND FUTURE-DEVELOPMENT [J].
BUCHANAN, BB .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1991, 288 (01) :1-9
[5]  
Cowtan K., 1994, JOINT CCP4 ESF EACBM, V31, P34
[6]   PRIMARY STRUCTURE OF SORGHUM MALATE-DEHYDROGENASE (NADP) DEDUCED FROM CDNA SEQUENCE - HOMOLOGY WITH MALATE-DEHYDROGENASE (NAD) [J].
CRETIN, C ;
LUCHETTA, P ;
JOLY, C ;
DECOTTIGNIES, P ;
LEPINIEC, L ;
GADAL, P ;
SALLANTIN, M ;
HUET, JC ;
PERNOLLET, JC .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1990, 192 (02) :299-303
[7]   LIGHT-REGULATED TRANSLATION OF CHLOROPLAST MESSENGER-RNAS THROUGH REDOX POTENTIAL [J].
DANON, A ;
MAYFIELD, SP .
SCIENCE, 1994, 266 (5191) :1717-1719
[8]  
DECOTTIGNIES P, 1988, J BIOL CHEM, V263, P11780
[9]  
DELAMOTTEGUERY F, 1991, EUR J BIOCHEM, V196, P287
[10]   CRYSTAL-STRUCTURE OF ESCHERICHIA-COLI MALATE-DEHYDROGENASE - A COMPLEX OF THE APOENZYME AND CITRATE AT 1-BULLET-87-ANGSTROM RESOLUTION [J].
HALL, MD ;
LEVITT, DG ;
BANASZAK, LJ .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 226 (03) :867-882