High-Throughput Nanofabrication of Infrared Plasmonic Nanoantenna Arrays for Vibrational Nanospectroscopy

被引:198
作者
Aksu, Serap [1 ]
Yanik, Ahmet A. [1 ]
Adato, Ronen [1 ]
Artar, Alp [1 ]
Huang, Min [1 ]
Altug, Hatice [1 ]
机构
[1] Boston Univ, Photon Ctr, Boston, MA 02215 USA
关键词
Shadow mask; nanostencil lithography; optical nanoantennas; surface plasmons; near-field enhancement; infrared spectroscopy; NEAR-FIELD; NANOPARTICLE; SPECTROSCOPY; LITHOGRAPHY; TECHNOLOGY; HOLES; GOLD; SIZE;
D O I
10.1021/nl101042a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The introduction of high-throughput and high-resolution nanofabrication techniques operating at low cost and low complexity is essential for the advancement of nanoplasmonic and nanophotonic fields In this paper. we demonstrate a novel fabrication approach based on nanostencil lithography for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays The technique relying on deposition of materials through a shadow mask enables plasmonic substrates supporting spectrally sharp collective resonances We show that reflectance spectra of these antenna arrays are comparable to that of arrays fabricated by electron beam lithography We also show that nanostencils can be reused multiple times to fabricate a series of infrared nanoantenna arrays with identical optical responses Finally, we demonstrate fabrication of plasmonic nanostructures in a variety of shapes with a single metal deposition step on different substrates, including nonconducting ones Our approach, by enabling the reusability of the stencil and offering flexibility on the substrate choice and nanopattern design, could facilitate the transition of plasmonic technologies to the real-world applications
引用
收藏
页码:2511 / 2518
页数:8
相关论文
共 53 条
[1]   Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet Ali ;
Wu, Chih-Hui ;
Shvets, Gennady ;
Altug, Hatice .
OPTICS EXPRESS, 2010, 18 (05) :4526-4537
[2]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[3]  
AKSU S, 2010, MAT RES SOC S P E, V1208
[4]   Ultrafast photonic crystal nanocavity laser [J].
Altug, Hatice ;
Englund, Dirk ;
Vuckovic, Jelena .
NATURE PHYSICS, 2006, 2 (07) :484-488
[5]   Fabry-Peacuterot nanocavities in multilayered plasmonic crystals for enhanced biosensing [J].
Artar, Alp ;
Yanik, Ahmet Ali ;
Altug, Hatice .
APPLIED PHYSICS LETTERS, 2009, 95 (05)
[6]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[7]   Collective resonances in gold nanoparticle arrays [J].
Auguie, Baptiste ;
Barnes, William L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[8]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[9]   Plasmonic components fabrication via nanoimprint [J].
Boltasseva, Alexandra .
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (11)
[10]  
Brewer G., 1980, Electron-beam technology in microelectronic fabrication