Surface studies of novel hydrophobic active carbons

被引:46
作者
Bradley, Robert H. [1 ,2 ]
Smith, Martin W. [3 ]
Andreu, Aurik [4 ]
Falco, Maurizio [4 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] MatSIRC Ltd, Carbon Technol, Penrith CA10 1NW, Cumbria, England
[3] Dstl, Porton Down, Salisbury SP4 0JQ, Wilts, England
[4] Robert Gordon Univ, Mat Res Ctr, Aberdeen AB10 1FR, Scotland
关键词
Active carbon; Hydrophobic; Plasma enhanced CVD; XPS; Water adsorption; WATER-ADSORPTION; MICROPOROUS CARBONS; MOLECULAR-SIEVE; KINETICS; VAPOR; CHEMISTRY; MODEL; SIZE; AIR;
D O I
10.1016/j.apsusc.2010.10.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The efficient adsorption of toxic organic species from humid airstreams by active carbons is impeded by the competitive adsorption of water vapour which, at low values of p/p(s), occurs at specific (polar) adsorption sites located at the edges of the carbon layer-planes and at in-plane defects. At higher pressures, adsorption in micropores and mesopores also occurs. The concentration of polar adsorption sites therefore determines the hydrophilicity of the carbon structure and their accelerated formation, by exposure to air and water vapour, is also responsible for the 'ageing' of active carbons. Overall, the adsorption of water reduces the volume of porosity available for the adsorption of target species and the hydrophilic nature of active carbons is recognized as a major barrier to their effective use in many applications. We present here results for the adsorption of nitrogen, organic and water vapours by a hydrophobic respirator granular active carbon produced by the thermal treatment of a base carbon, to desorb polar oxygen groups, followed by use of a plasma enhanced chemical vapour deposition (PECVD) treatment to apply a hydrophobic, fluorine containing, surface nanolayer. We show that at equivalent %RH values the treated carbon adsorbs significantly less water compared to an untreated (control) carbon and that the treatment does not reduce the levels of open porosity or impede the adsorption of a range of organic vapours at ambient temperatures. Preliminary evidence for the presence, after treatment, of constrictions at pore entrances which act as molecular gates is also presented. The treated carbon (after ageing for 6 weeks at 80%RH) is shown to have greater adsorptivity than an untreated base carbon toward hexane present in a humid (80%RH) airstream. This results in a 39% increase in break-through time. These hydrophobic properties persist one year after manufacture. The mechanism leading to the modified water adsorption properties is the partial desorption of polar oxygen sites followed by deposition at the external carbon surfaces of hydrophobic plasma polymer species. This reduces the polar surface free energy of the carbon and hence the amount of water adsorption occurring by the primary mechanism. This in turn retards the diffusion of water molecules into the micropores and leads to lower adsorption volumes at higher pressures. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2912 / 2919
页数:8
相关论文
共 36 条
[1]   AN EXAMINATION OF HOW EXPOSURE TO HUMID AIR CAN RESULT IN CHANGES IN THE ADSORPTION PROPERTIES OF ACTIVATED CARBONS [J].
ADAMS, LB ;
HALL, CR ;
HOLMES, RJ ;
NEWTON, RA .
CARBON, 1988, 26 (04) :451-459
[2]  
ANDREU A, 2007, CARB 2007 BIENN C AM
[3]   SURFACE STUDIES ON CARBON - WATER ADSORPTION ON POLYVINYLIDENE CHLORIDE CARBON [J].
BARTON, SS ;
EVANS, MJB ;
HARRISON, BH .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1973, 45 (03) :542-548
[4]   THE ADSORPTION OF WATER-VAPOR BY POROUS CARBON [J].
BARTON, SS ;
EVANS, MJB ;
MACDONALD, JAF .
CARBON, 1991, 29 (08) :1099-1105
[5]   Surface oxides on carbon and their analysis: a critical assessment [J].
Boehm, HP .
CARBON, 2002, 40 (02) :145-149
[6]   THE ADSORPTION OF VAPORS BY ACTIVATED AND HEAT-TREATED MICROPOROUS CARBONS .2. ASSESSMENT OF SURFACE POLARITY USING WATER-ADSORPTION [J].
BRADLEY, RH ;
RAND, B .
CARBON, 1993, 31 (02) :269-272
[7]   RELATIONSHIP BETWEEN CARBON-BLACK SURFACE-CHEMISTRY AND ENERGY [J].
BRADLEY, RH ;
SUTHERLAND, I ;
SHENG, E .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1995, 91 (18) :3201-3207
[8]   ON THE PHYSICAL ADSORPTION OF VAPORS BY MICROPOROUS CARBONS [J].
BRADLEY, RH ;
RAND, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1995, 169 (01) :168-176
[9]   A model for water adsorption in activated carbon [J].
Do, DD ;
Do, HD .
CARBON, 2000, 38 (05) :767-773
[10]  
Dubinin M.M., 1947, P ACAD SCI USSR PHYS, V55, DOI DOI 10.4236/OJS.2014.41001