Iterative approximation of fixed points of Lipschitz pseudocontractive maps

被引:31
作者
Chidume, CE [1 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, Trieste, Italy
关键词
pseudocontractive operators; q-uniformly smooth spaces; duality maps; weak sequential continuity;
D O I
10.1090/S0002-9939-01-06078-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E be a q-uniformly smooth Banach space possessing a weakly sequentially continuous duality map (e.g., l(p); 1 < p<infinity). Let T be a Lipschitzian pseudocontractive selfmapping of a nonempty closed convex and bounded subset K of E and let omega is an element of K be arbitrary. Then the iteration sequence {z(n)} defined by z(o) is an element of K, z(n+1) = (1 mu (n+1))omega + mu (n+1yn); (yn) = {1 - alpha (n)}z(n) + alpha (n)Tz(n), converges strongly to a fixed point of T, provided that {mu (n)} and {alpha (n)} have certain properties. If E is a Hilbert space, then {z(n)} converges strongly to the unique fixed point of T closest to omega.
引用
收藏
页码:2245 / 2251
页数:7
相关论文
共 15 条
[1]   STRONGLY CONVERGENT ITERATIVE SOLUTION OF 0 EPSILON U(X) FOR A MAXIMAL MONOTONE OPERATOR-U IN HILBERT-SPACE [J].
BRUCK, RE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (01) :114-126
[2]   Fixed point iteration for pseudocontractive maps [J].
Chidume, CE ;
Moore, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1163-1170
[3]   ZEROS OF ACCRETIVE OPERATORS [J].
DEIMLING, K .
MANUSCRIPTA MATHEMATICA, 1974, 13 (04) :365-374
[4]  
DIESTEL J, 1976, LECT NOTES MATH, V485
[5]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[6]  
HICKS TL, 1979, J MATH ANAL APPL, V59, P498
[7]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150
[8]  
LIU QH, 1987, J MATH ANAL APPL, V124, P157
[9]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[10]  
MULLER G, 1977, COMMENT MATH U CAROL, V18, P281