A new trust region method for unconstrained optimization

被引:39
作者
Shi, Zhen-Jun [1 ,2 ]
Guo, Jin-Hua [2 ]
机构
[1] Qufu Normal Univ, Coll Operat Res & Management, Rizhao 276826, Shandong, Peoples R China
[2] Univ Michigan, Dept Comp & Informat Sci, Dearborn, MI 48128 USA
基金
美国国家科学基金会;
关键词
unconstrained optimization; trust region method; global convergence; convergence rate;
D O I
10.1016/j.cam.2007.01.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new trust region method for unconstrained optimization problems. The new trust region method can automatically adjust the trust region radius of related subproblems at each iteration and has strong global convergence under some mild conditions. We also analyze the global linear convergence, local superlinear and quadratic convergence rate of the new method. Numerical results show that the new trust region method is available and efficient in practical computation. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:509 / 520
页数:12
相关论文
共 22 条
[1]  
Conn A., 2000, SOC IND APPL MATH, DOI [10.1137/1.9780898719857, DOI 10.1137/1.9780898719857]
[2]   NONMONOTONIC TRUST REGION ALGORITHM [J].
DENG, NY ;
XIAO, Y ;
ZHOU, FJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (02) :259-285
[3]  
FLETCHER R, 1980, PRACTICAL METHOD OPT, V1
[4]   Nonmonotone adaptive trust-region method for unconstrained optimization problems [J].
Fu, JH ;
Sun, WY .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (01) :489-504
[5]   Trust region algorithms and timestep selection [J].
Higham, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :194-210
[6]  
More J.J., 1983, MATH PROGRAMMING STA, P258
[7]  
MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17, DOI 10.1145/355934.355936
[8]  
Powell M. J. D., 1975, NONLINEAR PROGRAMMIN, V2, P1, DOI [10.1016/B978-0-12-372180-8.50042-1, DOI 10.1016/B978-0-12-372180-8.50042-1]
[10]   Automatic determination of an initial trust region in nonlinear programming [J].
Sartenaer, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06) :1788-1803