Global robust disturbance attenuation and almost disturbance decoupling for uncertain cascaded nonlinear systems

被引:33
作者
Su, WZ
Xie, LH
de Souza, CE
机构
[1] CNPq, Lab Nacl Comp Cient, Dept Syst & Control, BR-25651070 Petropolis, RJ, Brazil
[2] Univ Newcastle, Dept Elect & Comp Engn, Newcastle, NSW 2308, Australia
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
关键词
nonlinear systems; robust control; H-infinity control; disturbance decoupling; L-2-gain;
D O I
10.1016/S0005-1098(98)00200-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of global robust H-infinity disturbance attenuation for a class of non-minimum-phase nonlinear systems subject to parameter uncertainty. The problem addressed is the design of a state feedback controller such that the closed-loop system is input-to-state stable and the L-2-gain from the disturbance input to the controlled output is not larger than a prescribed value for all admissible parameter uncertainties. A recursive Lyapunov-based design approach is developed to construct the controller explicitly. The problem of global robust H-infinity almost disturbance decoupling, where the level of disturbance attenuation can be made arbitrarily small for all allowed uncertainties, is also addressed. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:697 / 707
页数:11
相关论文
共 16 条
[11]   NONLINEAR H-INFINITY ALMOST DISTURBANCE DECOUPLING [J].
MARINO, R ;
RESPONDEK, W ;
VANDERSCHAFT, AJ ;
TOMEI, P .
SYSTEMS & CONTROL LETTERS, 1994, 23 (03) :159-168
[12]   ON CHARACTERIZATIONS OF THE INPUT-TO-STATE STABILITY PROPERTY [J].
SONTAG, ED ;
WANG, Y .
SYSTEMS & CONTROL LETTERS, 1995, 24 (05) :351-359
[13]   L2-GAIN ANALYSIS OF NONLINEAR-SYSTEMS AND NONLINEAR STATE FEEDBACK-H-INFINITY CONTROL [J].
VANDERSCHAFT, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) :770-784
[14]   ON A STATE-SPACE APPROACH TO NONLINEAR H-INFINITY CONTROL [J].
VANDERSCHAFT, AJ .
SYSTEMS & CONTROL LETTERS, 1991, 16 (01) :1-8
[16]   Robust H-infinity control for a class of cascaded nonlinear systems [J].
Xie, LH ;
Su, WZ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1465-1469