The 'permeome' of the malaria parasite:: an overview of the membrane transport proteins of Plasmodium falciparum -: art. no. R26

被引:135
作者
Martin, RE
Henry, RI
Abbey, JL
Clements, JD
Kirk, K [1 ]
机构
[1] Australian Natl Univ, Fac Sci, Sch Biochem & Mol Biol, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, John Curtin Sch Med Res, Div Neurosci, Canberra, ACT 0200, Australia
关键词
D O I
10.1186/gb-2005-6-3-r26
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results: A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion: The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen.
引用
收藏
页数:22
相关论文
共 139 条
[1]   Complete genome sequence of the apicomplexan, Cryptosporidium parvum [J].
Abrahamsen, MS ;
Templeton, TJ ;
Enomoto, S ;
Abrahante, JE ;
Zhu, G ;
Lancto, CA ;
Deng, MQ ;
Liu, C ;
Widmer, G ;
Tzipori, S ;
Buck, GA ;
Xu, P ;
Bankier, AT ;
Dear, PH ;
Konfortov, BA ;
Spriggs, HF ;
Iyer, L ;
Anantharaman, V ;
Aravind, L ;
Kapur, V .
SCIENCE, 2004, 304 (5669) :441-445
[2]   Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes [J].
Alkhalil, A ;
Cohn, JV ;
Wagner, MA ;
Cabrera, JS ;
Rajapandi, T ;
Desai, SA .
BLOOD, 2004, 104 (13) :4279-4286
[3]   The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum [J].
Allen, RJW ;
Kirk, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (12) :11264-11272
[4]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[5]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[6]   Characterization of a functional bacterial homologue of sodium-dependent neurotransmitter transporters [J].
Androutsellis-Theotokis, A ;
Goldberg, NR ;
Ueda, K ;
Beppu, T ;
Beckman, ML ;
Das, S ;
Javitch, JA ;
Rudnick, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (15) :12703-12709
[7]   Gene annotation: Prediction and testing [J].
Ashurst, JL ;
Collins, JE .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2003, 4 :69-88
[8]   HEXOSE-MONOPHOSPHATE SHUNT ACTIVITY IN INTACT PLASMODIUM-FALCIPARUM-INFECTED ERYTHROCYTES AND IN FREE PARASITES [J].
ATAMNA, H ;
PASCARMONA, G ;
GINSBURG, H .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1994, 67 (01) :79-89
[9]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[10]   Arabidopsis AUX1 gene: A permease-like regulator of root gravitropism [J].
Bennett, MJ ;
Marchant, A ;
Green, HG ;
May, ST ;
Ward, SP ;
Millner, PA ;
Walker, AR ;
Schulz, B ;
Feldmann, KA .
SCIENCE, 1996, 273 (5277) :948-950