Regularity properties of a semismooth reformulation of variational inequalities

被引:42
作者
Facchinei, F
Fischer, A
Kanzow, C
机构
[1] Univ Rome La Sapienza, Dipartimento Informat & Sistemist, I-00185 Rome, Italy
[2] Univ Dortmund, Dept Math, D-44221 Dortmund, Germany
[3] Univ Hamburg, Inst Appl Math, D-20146 Hamburg, Germany
关键词
variational inequality problem; KKT conditions; strong regularity;
D O I
10.1137/S1052623496298194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational inequalities over sets defined by systems of equalities and inequalities are considered. A new reformulation of the KKT conditions for the variational inequality as a system of equations is proposed. A related unconstrained minimization reformulation is also investigated. As a by-product of the analysis, a new characterization of strong regularity of KKT points is given.
引用
收藏
页码:850 / 869
页数:20
相关论文
共 33 条
[11]  
FACCHINEI F, 1995, 102 U HAMB I APPL MA
[12]  
Facchinei F., 1997, COMPLEMENTARITY VARI, P76
[13]  
FERRIS MC, IN PRESS SIAM REV
[14]  
Fischer A., 1992, Optimization, V24, P269, DOI 10.1080/02331939208843795
[15]  
Fischer A., 1995, RECENT ADV NONSMOOTH, P88
[16]  
Fukushima M, 1996, NONLINEAR OPTIMIZATION AND APPLICATIONS, P155
[17]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[18]  
JIANG H, 1995, OPTIMIZATION, V33, P119
[19]   SENSITIVITY ANALYSIS FOR NONSMOOTH GENERALIZED EQUATIONS [J].
KING, AJ ;
ROCKAFELLAR, RT .
MATHEMATICAL PROGRAMMING, 1992, 55 (02) :193-212
[20]  
Kojima, 1980, ANAL COMPUTATION FIX, P93, DOI [10.1016/B978-0-12-590240-3.50009-4, DOI 10.1016/B978-0-12-590240-3.50009-4]