The functional significance of the monomeric and trimeric states of the photosystem II light harvesting complexes

被引:48
作者
Wentworth, M
Ruban, AV
Horton, P
机构
[1] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Robert Hill Inst, Sheffield S10 2TN, S Yorkshire, England
关键词
D O I
10.1021/bi034975i
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The main light harvesting complex of photosystem 11 in plants, LHCII, exists in a trimeric state. To understand the biological significance of trimerization, a comparison has been made been LHCII trimers and LHCII monomers prepared by treatment with phospholipase. The treatment used caused no loss of chlorophyll, but there was a difference in carotenoid composition, together with the previously observed alterations in absorption spectrum. It was found that, when compared to monomers, LHCII trimers showed increased thermal stability and a reduced structural flexibility as determined by the decreased rate and amplitude of fluorescence quenching in low-detergent concentration. It is suggested that LHCII should be considered as having two interacting domains: the lutein I domain, the site of fluorescence quenching [Wentworth et al. (2003) J. Biol. Chem. 278, 21845-21850], and the lutein 2 domain. The lutein 2 domain faces. the interior of the trimer, the differences in absorption spectrum and carotenoid binding in trimers compared to monomers indicating that the trimeric state modulates the conformation of this domain. It is suggested that the lutein 2 domain controls the conformation of the lutein 1 domain, thereby providing allosteric control of fluorescence quenching in LHCII. Thus, the pigment configuration and protein conformation in trimers is adapted for efficient light harvesting and enhanced protein stability. Furthermore, trimers exhibit the optimum level of control of energy dissipation by modulating the development of the quenched state of the complex.
引用
收藏
页码:501 / 509
页数:9
相关论文
共 57 条
[1]   Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: Implications for the mechanism of protective energy dissipation [J].
Andersson, J ;
Walters, RG ;
Horton, P ;
Jansson, S .
PLANT CELL, 2001, 13 (05) :1193-1204
[2]  
ANDERSSON J, 2003, IN PRESS PLANT J
[3]   In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants [J].
Aspinall-O'Dea, M ;
Wentworth, M ;
Pascal, A ;
Robert, B ;
Ruban, A ;
Horton, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (25) :16331-16335
[4]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[5]   Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts [J].
Boekema, EJ ;
van Breemen, JFL ;
van Roon, H ;
Dekker, JP .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 301 (05) :1123-1133
[6]   SUPRAMOLECULAR STRUCTURE OF THE PHOTOSYSTEM-II COMPLEX FROM GREEN PLANTS AND CYANOBACTERIA [J].
BOEKEMA, EJ ;
HANKAMER, B ;
BALD, D ;
KRUIP, J ;
NIELD, J ;
BOONSTRA, AF ;
BARBER, J ;
ROGNER, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (01) :175-179
[7]   EFFECTS OF CHOLATE ON PHOTOSYSTEM-II - SELECTIVE EXTRACTION OF A 22 KDA POLYPEPTIDE AND MODIFICATION OF Q(B)-SITE ACTIVITY [J].
BOWLBY, NR ;
YOCUM, CF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1144 (03) :271-277
[8]   The neoxanthin binding site of the major light harvesting complex (LHCII) from higher plants [J].
Croce, R ;
Remelli, R ;
Varotto, C ;
Breton, J ;
Bassi, R .
FEBS LETTERS, 1999, 456 (01) :1-6
[9]   Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis [J].
Davison, PA ;
Hunter, CN ;
Horton, P .
NATURE, 2002, 418 (6894) :203-206
[10]   Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes [J].
Dekker, JP ;
van Roon, H ;
Boekem, EJ .
FEBS LETTERS, 1999, 449 (2-3) :211-214