Crosstalk between calcium and redox signaling: From molecular mechanisms to health implications

被引:152
作者
Hidalgo, Cecilia [1 ,2 ]
Donoso, Paulina [1 ,2 ]
机构
[1] Univ Chile, Inst Ciencias Biomed, Fac Med, Ctr FONDAP Estudios Mol Celula, Santiago 7, Chile
[2] Univ Chile, Inst Ciencias Biomed, Fac Med, Programa Biol Mol & Celular, Santiago 7, Chile
关键词
D O I
10.1089/ars.2007.1886
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Studies done many years ago established unequivocally the key role of calcium as a universal second messenger. In contrast, the second messenger roles of reactive oxygen and nitrogen species have emerged only recently. Therefore, their contributions to physiological cell signaling pathways have not yet become universally accepted, and many biological researchers still regard them only as cellular noxious agents. Furthermore, it is becoming increasingly apparent that there are significant interactions between calcium and redox species, and that these interactions modify a variety of proteins that participate in signaling transduction pathways and in other fundamental cellular functions that determine cell life or death. This review article addresses first the central aspects of calcium and redox signaling pathways in animal cells, and continues with the molecular mechanisms that underlie crosstalk between calcium and redox signals under a number of physiological or pathological conditions. To conclude, the review focuses on conditions that, by promoting cellular oxidative stress, lead to the generation of abnormal calcium signals, and how this calcium imbalance may cause a variety of human diseases including, in particular, degenerative diseases of the central nervous system and cardiac pathologies.
引用
收藏
页码:1275 / 1312
页数:38
相关论文
共 453 条
[1]   HEAVY-METALS INDUCE RAPID CALCIUM RELEASE FROM SARCOPLASMIC-RETICULUM VESICLES ISOLATED FROM SKELETAL-MUSCLE [J].
ABRAMSON, JJ ;
TRIMM, JL ;
WEDEN, L ;
SALAMA, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (06) :1526-1530
[2]   S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide [J].
Adachi, T ;
Weisbrod, RM ;
Pimentel, DR ;
Ying, J ;
Sharov, VS ;
Schöneich, C ;
Cohen, RA .
NATURE MEDICINE, 2004, 10 (11) :1200-1207
[3]   SELECTIVE MODULATION OF NMDA RESPONSES BY REDUCTION AND OXIDATION [J].
AIZENMAN, E ;
LIPTON, SA ;
LORING, RH .
NEURON, 1989, 2 (03) :1257-1263
[4]   Calcium microdomains in mitochondria and nucleus [J].
Alonso, Maria Teresa ;
Villalobos, Carlos ;
Chamero, Pablo ;
Alvarez, Javier ;
Garcia-Sancho, Javier .
CELL CALCIUM, 2006, 40 (5-6) :513-525
[5]   Mediating molecular recognition by methionine oxidation: Conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin [J].
Anbanandam, A ;
Urbauer, RJB ;
Bartlett, RK ;
Smallwood, HS ;
Squier, TC ;
Urbauer, JL .
BIOCHEMISTRY, 2005, 44 (27) :9486-9496
[6]   Effect of hydrogen peroxide and dithiothreitol on contractile function of single skeletal muscle fibres from the mouse [J].
Andrade, FH ;
Reid, MB ;
Allen, DG ;
Westerblad, H .
JOURNAL OF PHYSIOLOGY-LONDON, 1998, 509 (02) :565-575
[7]   Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels [J].
Aracena, P ;
Tang, WT ;
Hamilton, SL ;
Hidalgo, C .
ANTIOXIDANTS & REDOX SIGNALING, 2005, 7 (7-8) :870-881
[8]   S-glutathionylation decreases Mg2+ inhibition and S-nitrosylation enhances Ca2+ activation of RyR1 channels [J].
Aracena, P ;
Sánchez, G ;
Donoso, P ;
Hamilton, SL ;
Hidalgo, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :42927-42935
[9]   Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1 [J].
Aracena-Parks, Paula ;
Goonasekera, Sanjeewa A. ;
Gilman, Charles P. ;
Dirksen, Robert T. ;
Hidalgo, Cecilia ;
Hamilton, Susan L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (52) :40354-40368
[10]   Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle [J].
Arany, Z ;
He, HM ;
Lin, JD ;
Hoyer, K ;
Handschin, C ;
Toka, O ;
Ahmad, F ;
Matsui, T ;
Chin, S ;
Wu, PH ;
Rybkin, II ;
Shelton, JM ;
Manieri, M ;
Cinti, S ;
Schoen, FJ ;
Bassel-Duby, R ;
Rosenzweig, A ;
Ingwall, JS ;
Spiegelman, BM .
CELL METABOLISM, 2005, 1 (04) :259-271