Distribution of zeros of random and quantum chaotic sections of positive line bundles

被引:163
作者
Shiffman, B [1 ]
Zelditch, S [1 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
关键词
D O I
10.1007/s002200050544
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the limit distribution of zeros of certain sequences of holomorphic sections of high powers L-N of a positive holomorphic Hermitian line bundle L over a compact complex manifold M. Our first result concerns "random" sequences of sections. Using the natural probability measure on the space of sequences of orthonormal bases {S-j(N)} of H-0(M, L-N), We show that fur almost every sequence {S-j(N)} the associated sequence of zero currents 1/N Z(Sj)N tends to the curvature form omega of L. Thus, the zeros of a sequence of sections S-N is an element of H-0(M, L-N) chosen independently and at random become uniformly distributed. Our second result concerns the zeros of quantum ergodic eigenfunctions, where the relevant orthonormal bases {S-j(N)} of H-0(M, L-N) consist of eigensections of a quantum ergodic map. We show that also in this case the zeros become uniformly distributed.
引用
收藏
页码:661 / 683
页数:23
相关论文
共 33 条
[1]  
[Anonymous], 1978, Principles of algebraic geometry
[2]   Correlations between zeros of a random polynomial [J].
Bleher, P ;
Di, XJ .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) :269-305
[3]  
Bloch A, 1932, P LOND MATH SOC, V33, P102
[4]   Quantum chaotic dynamics and random polynomials [J].
Bogomolny, E ;
Bohigas, O ;
Leboeuf, P .
JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (5-6) :639-679
[5]  
DEMONVEL LB, 1981, ANN MATH STUDIES, V99
[6]  
Donaldson SK, 1996, J DIFFER GEOM, V44, P666
[7]   ON THE DISTRIBUTION OF ROOTS OF POLYNOMIALS [J].
ERDOS, P ;
TURAN, P .
ANNALS OF MATHEMATICS, 1950, 51 (01) :105-119
[8]  
Fornaess J.-E., 1995, ANN MATH STUD, V137, P135
[9]   UBER MODIFIKATIONEN UND EXZEPTIONELLE ANALYTISCHE MENGEN [J].
GRAUERT, H .
MATHEMATISCHE ANNALEN, 1962, 146 (04) :331-368
[10]   Chaotic analytic zero points: Exact statistics for those of a random spin state [J].
Hannay, JH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (05) :L101-L105