Chaotic analytic zero points: Exact statistics for those of a random spin state

被引:72
作者
Hannay, JH
机构
[1] H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, Tyndall Avenue
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 05期
关键词
D O I
10.1088/0305-4470/29/5/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A natural statistical ensemble of 2J points on the unit sphere can be associated, via the Majorana representation, with a random quantum state of spin J, and an exact expression is obtained here for the general k point correlation function rho(k) in this ensemble. The pair correlation rho(2) in the large-J limit takes the relatively simple form (J/2 pi)(2)g(root J/29) where g(r) = [(sinh(2) r(2) + r(4)) cosh r(2) - 2r(2) sinh(2)]/sinh(3) r(2) and theta theta is the angular separation of the pair of points on the sphere. It appears (from the numerical work of others) that, in this limit, these statistics are typical of the zero points of analytic functions associated with chaotic quantum dynamical systems.
引用
收藏
页码:L101 / L105
页数:5
相关论文
共 16 条
[1]  
[Anonymous], 1980, Gos. Izd-vo Fiz.-Mat. Literatury
[2]   ORBITS OF ROTATION GROUP ON SPIN STATES [J].
BACRY, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (10) :1686-1688
[3]   DISTRIBUTION OF ROOTS OF RANDOM POLYNOMIALS [J].
BOGOMOLNY, E ;
BOHIGAS, O ;
LEBOEUF, P .
PHYSICAL REVIEW LETTERS, 1992, 68 (18) :2726-2729
[4]  
BOGOMOLNY E, 1996, UNPUB
[5]  
CAILLOL JM, 1981, J PHYS LETT-PARIS, V42, pL245, DOI 10.1051/jphyslet:019810042012024500
[6]   STATISTICAL ENSEMBLES OF COMPLEX QUATERNION AND REAL MATRICES [J].
GINIBRE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (03) :440-&
[7]   EXACT RESULTS FOR THE TWO-DIMENSIONAL ONE-COMPONENT PLASMA [J].
JANCOVICI, B .
PHYSICAL REVIEW LETTERS, 1981, 46 (06) :386-388
[8]   PHASE-SPACE APPROACH TO QUANTUM DYNAMICS [J].
LEBOEUF, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :4575-4586
[9]   CHAOS-REVEALING MULTIPLICATIVE REPRESENTATION OF QUANTUM EIGENSTATES [J].
LEBOEUF, P ;
VOROS, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10) :1765-1774
[10]  
LEBOEUF P, UNPUB