DISTRIBUTION OF ROOTS OF RANDOM POLYNOMIALS

被引:78
作者
BOGOMOLNY, E
BOHIGAS, O
LEBOEUF, P
机构
[1] Division de Physique Théorique, Institut de Physique Nucléaire
关键词
D O I
10.1103/PhysRevLett.68.2726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider polynomials of high degree with random coefficients which appear in the context of "quantum chaotic" dynamics and investigate various conditions under which their roots tend to concentrate near the unit circle in the complex plane. Correlation functions of roots are computed analytically. We also investigate a certain class of random polynomials whose roots cover, in a uniform way, the Riemann sphere. Special emphasis is devoted to the influence of symmetries.
引用
收藏
页码:2726 / 2729
页数:4
相关论文
共 14 条
  • [1] QUANTUM MAPS
    BERRY, MV
    BALAZS, NL
    TABOR, M
    VOROS, A
    [J]. ANNALS OF PHYSICS, 1979, 122 (01) : 26 - 63
  • [2] Bharucha-Reid A. T., 1986, RANDOM POLYNOMIALS
  • [3] BOGOMOLNY E, IPNO TH9117 REP
  • [4] CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS
    BOHIGAS, O
    GIANNONI, MJ
    SCHMIT, C
    [J]. PHYSICAL REVIEW LETTERS, 1984, 52 (01) : 1 - 4
  • [5] Haake F., 1987, Zeitschrift fur Physik B (Condensed Matter), V65, P381, DOI 10.1007/BF01303727
  • [6] Kac M., 1959, PROBABILITY RELATED
  • [7] Klauder J. R., 1985, COHERENT STATES
  • [8] PHASE-SPACE APPROACH TO QUANTUM DYNAMICS
    LEBOEUF, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19): : 4575 - 4586
  • [9] CHAOS-REVEALING MULTIPLICATIVE REPRESENTATION OF QUANTUM EIGENSTATES
    LEBOEUF, P
    VOROS, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (10): : 1765 - 1774
  • [10] Marden, 1996, GEOMETRY POLYNOMIALS