Mechanism of Sulfur Incorporation into Solution Processed CuIn(Se,S)2 Films

被引:19
作者
Chung, Choong-Heui
Lei, Bao
Bob, Brion
Li, Sheng-Han
Hou, William W.
Duan, Hsin-Sheng
Yang, Yang [1 ]
机构
[1] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
关键词
solar cells; CuIn(Se; S)(2); band gap; hydrazine; molecular precursors; SOLAR-CELLS; RAMAN-SCATTERING; CUINSE2; DEVICE; SEMICONDUCTOR;
D O I
10.1021/cm201827c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We have investigated the incorporation of sulfur into CuIn(Se,S)(2) thin films from different bonding environments in hydrazine-based precursor solutions. Sulfur is present in the form of (N2H5)(2)S, [Cu6S4](2-), and [In-2(Se,S)(4)](2-) complexes in mixed CuIn(Se,S)(2) precursor solutions. On the basis of compositional information from the precursor solutions and annealed films, we find that the incorporation efficiency of sulfur from (N2H5)(2)S into the final film is extremely low as a result of the high volatility of this compound and its weak interaction with other species while in solution. Using the same methodology, we additionally report that approximately 80% of the sulfur from [In-2(Se,S)(4)](2-) is incorporated into the final material, compared to approximately 40% of the sulfur from [Cu6S4](2-) complexes. This difference in sulfur incorporation efficiency may be due to the relatively weak Cu-S bonds present in the [Cu6S4](2-) structure, which are somewhat unstable compared to the In-S bonds in the [In-2(Se,S)(4)](2-) complex. This method makes it possible to precisely control the sulfur content in CuIn(Se,S)(2) films by adjusting the S/Se ratio of the [In-2(Se,S)(4)](2-) ions in the final precursor solution. These results will enable the precise adjustment and optimization of the energy band gap in solution-processed CuIn(Se,S)(2) absorber layers for the future fabrication of improved photovoltaic devices.
引用
收藏
页码:4941 / 4946
页数:6
相关论文
共 27 条
[1]  
[Anonymous], IEEE PHOT SPEC CONF
[2]   RAMAN-SCATTERING IN CUINS2XSE2(1-X) MIXED-CRYSTALS [J].
BACEWICZ, R ;
GEBICKI, W ;
FILIPOWICZ, J .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (49) :L777-L780
[3]   Phase formation and control of morphology in sputtered Cu-In alloy layers [J].
Chung, CH ;
Kim, SD ;
Kim, HJ ;
Adurodija, FO ;
Yoon, KH ;
Song, J .
SOLID STATE COMMUNICATIONS, 2003, 126 (04) :185-190
[4]   Identification of the Molecular Precursors for Hydrazine Solution Processed CuIn(Se,S)2 Films and Their Interactions [J].
Chung, Choong-Heui ;
Li, Sheng-Han ;
Lei, Bao ;
Yang, Wenbing ;
Hou, William W. ;
Bob, Brion ;
Yang, Yang .
CHEMISTRY OF MATERIALS, 2011, 23 (04) :964-969
[5]   Low-Cost Inorganic Solar Cells: From Ink To Printed Device [J].
Habas, Susan E. ;
Platt, Heather A. S. ;
van Hest, Maikel F. A. M. ;
Ginley, David S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6571-6594
[6]   Non-vacuum methods for formation of Cu(In,Ga)(Se,S)2 thin film photovoltaic absorbers [J].
Hibberd, C. J. ;
Chassaing, E. ;
Liu, W. ;
Mitzi, D. B. ;
Lincot, D. ;
Tiwari, A. N. .
PROGRESS IN PHOTOVOLTAICS, 2010, 18 (06) :434-452
[7]   Low-temperature processing of a solution-deposited CuInSSe thin-film solar cell [J].
Hou, William W. ;
Bob, Brion ;
Li, Sheng-han ;
Yang, Yang .
THIN SOLID FILMS, 2009, 517 (24) :6853-6856
[8]   Low-cost CIGS solar cells by paste coating and selenization [J].
Kaelin, M ;
Rudmann, D ;
Kurdesau, F ;
Zogg, H ;
Meyer, T ;
Tiwari, AN .
THIN SOLID FILMS, 2005, 480 :486-490
[9]   Low cost processing of CIGS thin film solar cells [J].
Kaelin, M ;
Rudmann, D ;
Tiwari, AN .
SOLAR ENERGY, 2004, 77 (06) :749-756
[10]  
KAPUR VK, 2003, THIN SOLID FILMS, P431