Numerical simulation of transmission coefficient using c-number Langevin equation

被引:28
作者
Barik, D [1 ]
Bag, BC
Ray, DS
机构
[1] Indian Assoc Cultivat Sci, Kolkata 700032, W Bengal, India
[2] Visva Bharati, Dept Chem, Santini Ketan 731235, W Bengal, India
关键词
D O I
10.1063/1.1628227
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We numerically implement the reactive flux formalism on the basis of a recently proposed c-number Langevin equation [Barik et al., J. Chem. Phys. 119, 680 (2003); Banerjee et al., Phys. Rev. E 65, 021109 (2002)] to calculate transmission coefficient. The Kramers' turnover, the T-2 enhancement of the rate at low temperatures and other related features of temporal behavior of the transmission coefficient over a range of temperature down to absolute zero, noise correlation, and friction are examined for a double well potential and compared with other known results. This simple method is based on canonical quantization and Wigner quasiclassical phase space function and takes care of quantum effects due to the system order by order. (C) 2003 American Institute of Physics.
引用
收藏
页码:12973 / 12980
页数:8
相关论文
共 48 条
[1]   Thermodynamics and kinetics of a Brownian motor [J].
Astumian, RD .
SCIENCE, 1997, 276 (5314) :917-922
[2]   Quantum Kramers equation for energy diffusion and barrier crossing dynamics in the low-friction regime [J].
Banerjee, D ;
Banik, SK ;
Bag, BC ;
Ray, DS .
PHYSICAL REVIEW E, 2002, 66 (05) :20
[3]   Quantum Smoluchowski equation: escape from a metastable state [J].
Banerjee, D ;
Bag, BC ;
Banik, SK ;
Ray, DS .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 318 (1-2) :6-13
[4]   Approach to quantum Kramers' equation and barrier crossing dynamics [J].
Banerjee, D ;
Bag, BC ;
Banik, SK ;
Ray, DS .
PHYSICAL REVIEW E, 2002, 65 (02) :1-021109
[5]   Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions [J].
Banik, Suman Kumar ;
Bag, Bidhan Chandra ;
Ray, Deb Shankar .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05) :1-051106
[6]   Quantum phase-space function formulation of reactive flux theory [J].
Barik, D ;
Banik, SK ;
Ray, DS .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (02) :680-695
[7]   ACTIVATED RATE-PROCESSES - GENERALIZATION OF THE KRAMERS-GROTE-HYNES AND LANGER THEORIES [J].
BEREZHKOVSKII, AM ;
POLLAK, E ;
ZITSERMAN, VY .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04) :2422-2437
[8]  
BERNE BJ, 1986, ANNU REV PHYS CHEM, V37, P401
[9]   INFLUENCE OF DISSIPATION ON QUANTUM TUNNELING IN MACROSCOPIC SYSTEMS [J].
CALDEIRA, AO ;
LEGGETT, AJ .
PHYSICAL REVIEW LETTERS, 1981, 46 (04) :211-214
[10]   NON-MARKOVIAN THEORY OF ACTIVATED RATE-PROCESSES .1. FORMALISM [J].
CARMELI, B ;
NITZAN, A .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (01) :393-404