The phytoalexins from cultivated and wild crucifers: Chemistry and biology

被引:179
作者
Pedras, M. Soledade C. [1 ]
Yaya, Estifanos E. [1 ]
Glawischnig, Erich [2 ]
机构
[1] Univ Saskatchewan, Dept Chem, Saskatoon, SK S7N 5C9, Canada
[2] Tech Univ Munich, Lehrstuhl Genet, D-85354 Freising Weihenstephan, Germany
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
SULFUR-CONTAINING PHYTOALEXIN; CANCER CHEMOPREVENTIVE ACTIVITY; CONTAINING STRESS METABOLITES; ARABIDOPSIS-THALIANA; LEPTOSPHAERIA-MACULANS; INDOLE PHYTOALEXINS; SCLEROTINIA-SCLEROTIORUM; ABSOLUTE-CONFIGURATION; CAMALEXIN BIOSYNTHESIS; DISEASE RESISTANCE;
D O I
10.1039/c1np00020a
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phytoalexins are antimicrobial secondary metabolites produced de novo by plants in response to stress, including microbial attack. In general, phytoalexins are important components of plant defenses against fungal and bacterial pathogens. The phytoalexins of crucifers are indole alkaloids derived from (S)-tryptophan, most of which contain a sulfur atom derived from cysteine. Beside their antimicrobial activity against different plant pathogenic species, cruciferous phytoalexins have shown anticarcinogenic effects on various human cell lines. This review focuses on the phytoalexins produced by cruciferous plants reported to date, with particular emphasis on their chemical synthesis, biosynthesis, metabolism by plant fungal pathogens and biological activities. A summary table containing all phytoalexins, their cultivated and wild cruciferous sources, their synthetic starting materials, biotransformation products and biological activities is provided.
引用
收藏
页码:1381 / 1405
页数:25
相关论文
共 164 条
[1]   Abiotic stress and plant genome evolution. Search for new models [J].
Amtmann, A ;
Bohnert, HJ ;
Bressan, RA .
PLANT PHYSIOLOGY, 2005, 138 (01) :127-130
[3]  
[Anonymous], [No title captured]
[4]   SYNTHESIS OF CAMALEXIN AND RELATED PHYTOALEXINS [J].
AYER, WA ;
CRAW, PA ;
MA, YT ;
MIAO, SC .
TETRAHEDRON, 1992, 48 (14) :2919-2924
[5]   Toward a global phylogeny of the Brassicaceae [J].
Bailey, C. Donovan ;
Koch, Marcus A. ;
Mayer, Michael ;
Mummenhoff, Klaus ;
O'Kane, Steve L., Jr. ;
Warwick, Suzanne I. ;
Windham, Michael D. ;
Al-Shehbaz, Ihsan A. .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (11) :2142-2160
[6]   A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase [J].
Banerjee, T. ;
DuHadaway, J. B. ;
Gaspari, P. ;
Sutanto-Ward, E. ;
Munn, D. H. ;
Mellor, A. L. ;
Malachowski, W. P. ;
Prendergast, G. C. ;
Muller, A. J. .
ONCOGENE, 2008, 27 (20) :2851-2857
[7]   Phytoalexins from Brassica (Cruciferae) as oviposition stimulants for the cabbage root fly, Delia radicum [J].
Baur, Robert ;
Staedler, Erich ;
Monde, Kenji ;
Takasugi, Mitsuo .
CHEMOECOLOGY, 1998, 8 (04) :163-168
[8]   Structural complexity, differential response to infection, and tissue specificity of indolic and phenylpropanoid secondary metabolism in Arabidopsis roots [J].
Bednarek, P ;
Schneider, B ;
Svatos, A ;
Oldham, NJ ;
Hahlbrock, K .
PLANT PHYSIOLOGY, 2005, 138 (02) :1058-1070
[9]   A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense [J].
Bednarek, Pawel ;
Pislewska-Bednarek, Mariola ;
Svatos, Ales ;
Schneider, Bernd ;
Doubsky, Jan ;
Mansurova, Madina ;
Humphry, Matt ;
Consonni, Chiara ;
Panstruga, Ralph ;
Sanchez-Vallet, Andrea ;
Molina, Antonio ;
Schulze-Lefert, Paul .
SCIENCE, 2009, 323 (5910) :101-106
[10]   The Multifunctional Enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) Converts Cysteine-Indole-3-Acetonitrile to Camalexin in the Indole-3-Acetonitrile Metabolic Network of Arabidopsis thaliana [J].
Boettcher, Christoph ;
Westphal, Lore ;
Schmotz, Constanze ;
Prade, Elke ;
Scheel, Dierk ;
Glawischnig, Erich .
PLANT CELL, 2009, 21 (06) :1830-1845