Intrinsic and extrinsic performance limits of graphene devices on SiO2

被引:2572
作者
Chen, Jian-Hao [1 ,2 ,3 ]
Jang, Chaun [2 ,3 ]
Xiao, Shudong [2 ,3 ]
Ishigami, Masa [2 ,3 ]
Fuhrer, Michael S. [1 ,2 ,3 ]
机构
[1] Univ Maryland, Mat Res Sci & Engn Ctr, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Ctr Nanophys & Adv Mat, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nnano.2008.58
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The linear dispersion relation in graphene(1,2) gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder(3) or phonons(4-8), is independent of carrier density, n. Here we show that electron-acoustic phonon scattering(4-6) is indeed independent of n, and contributes only 30 V to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x10(12) cm(-2), we infer a mean free path for electron-acoustic phonon scattering of > 2 mm and an intrinsic mobility limit of 2 x 10(5) cm(2) V-1 s(-1). If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( similar to 7.7 x 10(4) cm(2) V-1 s(-1); ref. 9) and that of semiconducting carbon nanotubes ( similar to 1 x 10(5) cm(2) V-1 s(-1); ref. 10). A strongly temperature-dependent resistivity contribution is observed above similar to 200 K ( ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate11,12 and limit the room-temperature mobility to similar to 4 x 10(4) cm(2) V-1 s(-1), indicating the importance of substrate choice for graphene devices13.
引用
收藏
页码:206 / 209
页数:4
相关论文
共 30 条
  • [1] A self-consistent theory for graphene transport
    Adam, Shaffique
    Hwang, E. H.
    Galitski, V. M.
    Das Sarma, S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) : 18392 - 18397
  • [2] Antimonide-based compound semiconductors for electronic devices: A review
    Bennett, BR
    Magno, R
    Boos, JB
    Kruppa, W
    Ancona, MG
    [J]. SOLID-STATE ELECTRONICS, 2005, 49 (12) : 1875 - 1895
  • [3] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [4] CHEN JH, IN PRESS NATURE PHYS
  • [5] Printed graphene circuits
    Chen, Jian-Hao
    Ishigami, Masa
    Jang, Chaun
    Hines, Daniel R.
    Fuhrer, Michael S.
    Williams, Ellen D.
    [J]. ADVANCED MATERIALS, 2007, 19 (21) : 3623 - 3627
  • [6] Extraordinary mobility in semiconducting carbon nanotubes
    Durkop, T
    Getty, SA
    Cobas, E
    Fuhrer, MS
    [J]. NANO LETTERS, 2004, 4 (01) : 35 - 39
  • [7] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [8] Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator:: The role of remote phonon scattering
    Fischetti, MV
    Neumayer, DA
    Cartier, EA
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 90 (09) : 4587 - 4608
  • [9] FRATINI S, 2007, SUBSTRATET LIMITED E, P1303
  • [10] HESS K, 1979, SOLID STATE COMMUN, V30, P807, DOI 10.1016/0038-1098(79)90051-6