Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols

被引:556
作者
Fu, Tzung-May [4 ]
Jacob, Daniel J. [4 ]
Wittrock, Folkard [1 ]
Burrows, John P. [1 ]
Vrekoussis, Mihalis [1 ]
Henze, Daven K. [2 ,3 ]
机构
[1] Univ Bremen, Inst Environm Phys & Remote Sensing, D-28334 Bremen, Germany
[2] Columbia Univ, Earth Inst, New York, NY 10025 USA
[3] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[4] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
关键词
D O I
10.1029/2007JD009505
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We construct global budgets of atmospheric glyoxal and methylglyoxal with the goal of quantifying their potential for global secondary organic aerosol (SOA) formation via irreversible uptake by aqueous aerosols and clouds. We conduct a detailed simulation of glyoxal and methylglyoxal in the GEOS-Chem global 3-D chemical transport model including our best knowledge of source and sink processes. Our resulting best estimates of the global sources of glyoxal and methylglyoxal are 45 Tg a(-1) and 140 Tg a(-1), respectively. Oxidation of biogenic isoprene contributes globally 47% of glyoxal and 79% of methylglyoxal. The second most important precursors are acetylene (mostly anthropogenic) for glyoxal and acetone (mostly biogenic) for methylglyoxal. Both acetylene and acetone have long lifetimes and provide a source of dicarbonyls in the free troposphere. Atmospheric lifetimes of glyoxal and methylglyoxal in the model are 2.9 h and 1.6 h, respectively, mostly determined by photolysis. Simulated dicarbonyl concentrations in continental surface air at northern midlatitudes are in the range 10-100 ppt, consistent with in situ measurements. On a global scale, the highest concentrations are over biomass burning regions, in agreement with glyoxal column observations from the SCIAMACHY satellite instrument. SCIAMACHY and a few ship cruises also suggest a large marine source of dicarbonyls missing from our model. The global source of SOA from the irreversible uptake of dicarbonyls in GEOS-Chem is 11 Tg C a(-1), including 2.6 Tg C a(-1) from glyoxal and 8 Tg C a(-1) from methylglyoxal; 90% of this source takes place in clouds. The magnitude of the global SOA source from dicarbonyls is comparable to that computed in GEOS-Chem from the standard mechanism involving reversible partitioning of semivolatile products from the oxidation of monoterpenes, sesquiterpenes, isoprene, and aromatics.
引用
收藏
页数:17
相关论文
共 129 条
[51]   Diurnal variations and vertical gradients of biogenic volatile and semi-volatile organic compounds at the Tomakomai larch forest station in Japan [J].
Ieda, Teruyo ;
Kitamori, Yasuyuki ;
Mochida, Michihiro ;
Hirata, Ryuichi ;
Hirano, Takashi ;
Inukai, Kou ;
Fujinuma, Yasumi ;
Kawamura, Kimitaka .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2006, 58 (03) :177-186
[52]   Atmospheric budget of acetone [J].
Jacob, DJ ;
Field, BD ;
Jin, EM ;
Bey, I ;
Li, QB ;
Logan, JA ;
Yantosca, RM ;
Singh, HB .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D10)
[53]   Heterogeneous chemistry and tropospheric ozone [J].
Jacob, DJ .
ATMOSPHERIC ENVIRONMENT, 2000, 34 (12-14) :2131-2159
[54]  
*JPL, 2006, 15 JPL CALTECH
[55]   Identification of polymers as major components of atmospheric organic aerosols [J].
Kalberer, M ;
Paulsen, D ;
Sax, M ;
Steinbacher, M ;
Dommen, J ;
Prevot, ASH ;
Fisseha, R ;
Weingartner, E ;
Frankevich, V ;
Zenobi, R ;
Baltensperger, U .
SCIENCE, 2004, 303 (5664) :1659-1662
[56]   Organic aerosol and global climate modelling: a review [J].
Kanakidou, M ;
Seinfeld, JH ;
Pandis, SN ;
Barnes, I ;
Dentener, FJ ;
Facchini, MC ;
Van Dingenen, R ;
Ervens, B ;
Nenes, A ;
Nielsen, CJ ;
Swietlicki, E ;
Putaud, JP ;
Balkanski, Y ;
Fuzzi, S ;
Horth, J ;
Moortgat, GK ;
Winterhalter, R ;
Myhre, CEL ;
Tsigaridis, K ;
Vignati, E ;
Stephanou, EG ;
Wilson, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :1053-1123
[57]   Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States during the summer 2002 New England Air Quality Study field campaign [J].
Kleinman, Lawrence I. ;
Daum, Peter H. ;
Lee, Yin-Nan ;
Senum, Gunnar I. ;
Springston, Stephen R. ;
Wang, Jian ;
Berkowitz, Carl ;
Hubbe, John ;
Zaveri, Rahul A. ;
Brechtel, Fred J. ;
Jayne, John ;
Onasch, Timothy B. ;
Worsnop, Douglas .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D9)
[58]   Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds [J].
Kroll, JH ;
Ng, NL ;
Murphy, SM ;
Varutbangkul, V ;
Flagan, RC ;
Seinfeld, JH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D23) :1-10
[59]   Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra [J].
Lanz, V. A. ;
Alfarra, M. R. ;
Baltensperger, U. ;
Buchmann, B. ;
Hueglin, C. ;
Prevot, A. S. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (06) :1503-1522
[60]   Atmospheric carbonyl compounds at a rural southeastern United States site [J].
Lee, YN ;
Zhou, XL ;
Hallock, K .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995, 100 (D12) :25933-25944