No-Reference Image Sharpness Assessment in Autoregressive Parameter Space

被引:327
作者
Gu, Ke [1 ]
Zhai, Guangtao [1 ]
Lin, Weisi [2 ]
Yang, Xiaokang [1 ]
Zhang, Wenjun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Key Lab Digital Media Proc & Transmiss, Inst Image Commun & Informat Proc, Shanghai 200240, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Engn, Singapore 639798, Singapore
基金
美国国家科学基金会;
关键词
Image sharpness/blurriness; image quality assessment (IQA); no-reference (NR)/blind; autoregressive (AR) parameters; YIQ color space; stereoscopic image; binocular rivalry; REFERENCE QUALITY ASSESSMENT; FREE-ENERGY PRINCIPLE; STEREOSCOPIC IMAGES; STATISTICS; BRAIN;
D O I
10.1109/TIP.2015.2439035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new no-reference (NR)/blind sharpness metric in the autoregressive (AR) parameter space. Our model is established via the analysis of AR model parameters, first calculating the energy-and contrast-differences in the locally estimated AR coefficients in a pointwise way, and then quantifying the image sharpness with percentile pooling to predict the overall score. In addition to the luminance domain, we further consider the inevitable effect of color information on visual perception to sharpness and thereby extend the above model to the widely used YIQ color space. Validation of our technique is conducted on the subsets with blurring artifacts from four large-scale image databases (LIVE, TID2008, CSIQ, and TID2013). Experimental results confirm the superiority and efficiency of our method over existing NR algorithms, the state-of-the-art blind sharpness/blurriness estimators, and classical full-reference quality evaluators. Furthermore, the proposed metric can be also extended to stereoscopic images based on binocular rivalry, and attains remarkably high performance on LIVE3D-I and LIVE3D-II databases.
引用
收藏
页码:3218 / 3231
页数:14
相关论文
共 58 条
[21]   The Bayesian brain: the role of uncertainty in neural coding and computation [J].
Knill, DC ;
Pouget, A .
TRENDS IN NEUROSCIENCES, 2004, 27 (12) :712-719
[22]   Most apparent distortion: full-reference image quality assessment and the role of strategy [J].
Larson, Eric C. ;
Chandler, Damon M. .
JOURNAL OF ELECTRONIC IMAGING, 2010, 19 (01)
[23]   ALTERNATION PROCESS IN BINOCULAR RIVALRY [J].
LEVELT, WJM .
BRITISH JOURNAL OF PSYCHOLOGY, 1966, 57 :225-&
[24]   Image Quality Assessment Based on Gradient Similarity [J].
Liu, Anmin ;
Lin, Weisi ;
Narwaria, Manish .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (04) :1500-1512
[25]   Additive White Gaussian Noise Level Estimation in SVD Domain for Images [J].
Liu, Wei ;
Lin, Weisi .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (03) :872-883
[26]  
Marziliano P, 2002, 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, P57, DOI 10.1109/ICIP.2002.1038902
[27]   Unequal weighting of monocular inputs in binocular combination: Implications for the compression of stereoscopic imagery [J].
Meegan, DV ;
Stelmach, LB ;
Tam, WJ .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-APPLIED, 2001, 7 (02) :143-153
[28]   No-Reference Image Quality Assessment in the Spatial Domain [J].
Mittal, Anish ;
Moorthy, Anush Krishna ;
Bovik, Alan Conrad .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (12) :4695-4708
[29]   Subjective evaluation of stereoscopic image quality [J].
Moorthy, Anush Krishna ;
Su, Che-Chun ;
Mittal, Anish ;
Bovik, Alan Conrad .
SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (08) :870-883
[30]   Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality [J].
Moorthy, Anush Krishna ;
Bovik, Alan Conrad .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) :3350-3364