Nonparametric inference for competing risks current status data with continuous, discrete or grouped observation times

被引:15
作者
Maathuis, M. H. [1 ]
Hudgens, M. G. [2 ]
机构
[1] ETH, Seminar Stat, CH-8092 Zurich, Switzerland
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Competing risk; Confidence interval; Current status data; Interval censoring; Nonparametric maximum likelihood estimator; Survival analysis; MAXIMUM-LIKELIHOOD-ESTIMATION; REDUCTION ALGORITHM; ISOTONIC ESTIMATION; CENSORED-DATA; DRUG-USERS; THAILAND; BANGKOK; COHORT; MLE;
D O I
10.1093/biomet/asq083
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
New methods and theory have recently been developed to nonparametrically estimate cumulative incidence functions for competing risks survival data subject to current status censoring. In particular, the limiting distribution of the nonparametric maximum likelihood estimator and a simplified naive estimator have been established under certain smoothness conditions. In this paper, we establish the large-sample behaviour of these estimators in two additional models, namely when the observation time distribution has discrete support and when the observation times are grouped. These asymptotic results are applied to the construction of confidence intervals in the three different models. The methods are illustrated on two datasets regarding the cumulative incidence of different types of menopause from a cross-sectional sample of women in the United States and subtype-specific HIV infection from a sero-prevalence study in injecting drug users in Thailand.
引用
收藏
页码:325 / 340
页数:16
相关论文
共 23 条
[1]   AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION [J].
AYER, M ;
BRUNK, HD ;
EWING, GM ;
REID, WT ;
SILVERMAN, E .
ANNALS OF MATHEMATICAL STATISTICS, 1955, 26 (04) :641-647
[2]   Confidence intervals for current status data [J].
Banerjee, M ;
Wellner, JA .
SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (03) :405-424
[3]  
Banerjee M, 2001, ANN STAT, V29, P1699
[4]   Nonparametric estimation of the bivariate CDF for arbitrarily censored data [J].
Gentleman, R ;
Vandal, AC .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (04) :557-571
[5]   Computing Chernoff's distribution [J].
Groeneboom, P ;
Wellner, JA .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2001, 10 (02) :388-400
[6]   The support reduction algorithm for computing non-parametric function estimates in mixture models [J].
Groeneboom, Piet ;
Jongbloed, Geurt ;
Wellner, Jon A. .
SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (03) :385-399
[7]   Current status data with competing risks: Consistency and rates of convergence of the MLE [J].
Groeneboom, Piet ;
Maathuis, Marloes H. ;
Wellner, Jon A. .
ANNALS OF STATISTICS, 2008, 36 (03) :1031-1063
[8]   Current status data with competing risks: Limiting distribution of the MLE [J].
Groeneboom, Piet ;
Maathuis, Marloes H. ;
Wellner, Jon A. .
ANNALS OF STATISTICS, 2008, 36 (03) :1064-1089
[9]   Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation [J].
Hudgens, MG ;
Satten, GA ;
Longini, IM .
BIOMETRICS, 2001, 57 (01) :74-80
[10]   Maximum likelihood estimation of ordered multinomial parameters [J].
Jewell, NP ;
Kalbfleisch, JD .
BIOSTATISTICS, 2004, 5 (02) :291-306