A structure-activity relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide hydrolase

被引:51
作者
Cascio, MG
Minassi, A
Ligresti, A
Appendino, G
Burstein, S
Di Marzo, V
机构
[1] CNR, Ist Chim Biomol, Endocannabinoid Res Grp, I-80078 Pozzuoli, NA, Italy
[2] DiSCAFF, I-28100 Novara, Italy
[3] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA
关键词
D O I
10.1016/j.bbrc.2003.12.075
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
N-arachidonoyl-glycine (NAGly) has been recently identified in rodent tissues and found to exhibit analgesic activity in vivo. NAGly is a potent inhibitor of the fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for the degradation of the endocannabinoid N-arachidonoyl-ethanolamine (anandamide), and was shown recently to elevate the blood levels of the this analgesic compound. We have synthesized several N-arachidonoyl-amino acids of potential natural occurrence, as well as the D- and L-isomers of N-arachidonoyl-alanine, and have tested their activity on FAAH preparations from mouse, rat, and human cell lines, and from mouse or rat brain. The results indicate that the relative potency and enantio selectivity of N-arachidonoyl-amino acids as FAAH inhibitors depend on the animal species. Thus, whilst NAGly is the most potent compound on the rat and mouse enzymes, N-arachidonoyl-isoleucine is active only on human FAAH and N-arachidonoyl-alanine enantiomers show a varying degree of potency. Taken together, these data support the view that an enhancement of endogenous anandamide levels underlies in part the analgesic effects of NAGly in rodents. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:192 / 196
页数:5
相关论文
共 27 条
[1]   Activation of TRPV1 by the satiety factor oleoylethanolamide [J].
Ahern, GP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (33) :30429-30434
[2]  
BRADSHAW HB, 2003, LEVELS ENDOCANNABINO
[3]   Oxidative metabolism of anandamide [J].
Burstein, SH ;
Rossetti, RG ;
Yagen, B ;
Zurier, RB .
PROSTAGLANDINS & OTHER LIPID MEDIATORS, 2000, 61 (1-2) :29-41
[4]   Regulation of anandamide tissue levels by N-arachidonylglycine [J].
Burstein, SH ;
Huang, SM ;
Petros, TJ ;
Rossetti, RG ;
Walker, JM ;
Zurier, RB .
BIOCHEMICAL PHARMACOLOGY, 2002, 64 (07) :1147-1150
[5]   Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides [J].
Cravatt, BF ;
Giang, DK ;
Mayfield, SP ;
Boger, DL ;
Lerner, RA ;
Gilula, NB .
NATURE, 1996, 384 (6604) :83-87
[6]   Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase [J].
Cravatt, BF ;
Demarest, K ;
Patricelli, MP ;
Bracey, MH ;
Giang, DK ;
Martin, BR ;
Lichtman, AH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9371-9376
[7]   CHEMICAL CHARACTERIZATION OF A FAMILY OF BRAIN LIPIDS THAT INDUCE SLEEP [J].
CRAVATT, BF ;
PROSPEROGARCIA, O ;
SIUZDAK, G ;
GILULA, NB ;
HENRIKSEN, SJ ;
BOGER, DL ;
LERNER, RA .
SCIENCE, 1995, 268 (5216) :1506-1509
[8]   Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders [J].
De Petrocellis, L ;
Melck, D ;
Bisogno, T ;
Di Marzo, V .
CHEMISTRY AND PHYSICS OF LIPIDS, 2000, 108 (1-2) :191-209
[9]   The fatty acid amide hydrolase (FAAH) [J].
Deutsch, DG ;
Ueda, N ;
Yamamoto, S .
PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, 2002, 66 (2-3) :201-210
[10]   ISOLATION AND STRUCTURE OF A BRAIN CONSTITUENT THAT BINDS TO THE CANNABINOID RECEPTOR [J].
DEVANE, WA ;
HANUS, L ;
BREUER, A ;
PERTWEE, RG ;
STEVENSON, LA ;
GRIFFIN, G ;
GIBSON, D ;
MANDELBAUM, A ;
ETINGER, A ;
MECHOULAM, R .
SCIENCE, 1992, 258 (5090) :1946-1949