Monte Carlo simulations of short-time critical dynamics

被引:275
作者
Zheng, B [1 ]
机构
[1] Univ Halle Wittenberg, Fachbereich Phys, D-06099 Halle, Germany
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 1998年 / 12卷 / 14期
关键词
D O I
10.1142/S021797929800288X
中图分类号
O59 [应用物理学];
学科分类号
摘要
Monte Carlo simulations of the short-time critical dynamics are reviewed. The short-time universal scaling behavior of the dynamic Ising model and Potts model are discussed in detail, while extension and application to more complex systems as the XY model, the fully frustrated XY model and other dynamic systems are also presented. The investigation of the universal behavior of the short-time dynamics not only enlarges the fundamental knowledge on critical phenomena but also, more interestingly, provides possible new ways to determine not only the new critical exponents theta and theta(1), but also the traditional dynamic critical exponent z as well as all static critical exponents.
引用
收藏
页码:1419 / 1484
页数:66
相关论文
共 126 条
[1]  
ADLER J, 1996, ANN REV COMPUTATIONA, V4
[2]   FINITE-SIZE CALCULATION OF THE DYNAMICAL CRITICAL EXPONENT OF THE 3-STATE POTTS-MODEL [J].
AYDIN, M ;
YALABIK, MC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (10) :1741-1743
[3]   CRITICAL RELAXATION OF THE TWO-DIMENSIONAL 3-STATE POTTS-MODEL WITH CONSERVED DYNAMICS [J].
AYDIN, M ;
YALABIK, MC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (03) :769-772
[4]   STATIC CRITICAL EXPONENTS FROM THE DYNAMICS OF DAMAGE SPREADING AND OVERHANGS IN THE ISING-MODEL WITH TEMPERATURE-GRADIENT [J].
BATROUNI, GG ;
HANSEN, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (17) :L1059-L1064
[5]   NON-LINEAR CRITICAL SLOWING DOWN OF THE ONE-COMPONENT GINZBURG-LANDAU FIELD [J].
BAUSCH, R ;
EISENRIEGLER, E ;
JANSSEN, HK .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1979, 36 (02) :179-186
[6]   EQUATION OF MOTION AND NONLINEAR RESPONSE NEAR CRITICAL-POINT [J].
BAUSCH, R ;
JANSSEN, HK .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 25 (03) :275-278
[7]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[8]   DYNAMIC CRITICAL EXPONENTS IN ISING SPIN-GLASSES [J].
BERNARDI, L ;
CAMPBELL, IA .
PHYSICAL REVIEW B, 1994, 49 (01) :728-731
[9]   VIOLATION OF UNIVERSALITY FOR ISING SPIN-GLASS TRANSITIONS [J].
BERNARDI, L ;
CAMPBELL, IA .
PHYSICAL REVIEW B, 1995, 52 (17) :12501-12504
[10]   Critical exponents in Ising spin glasses [J].
Bernardi, LW ;
Campbell, IA .
PHYSICAL REVIEW B, 1997, 56 (09) :5271-5275