Monte Carlo simulations of short-time critical dynamics

被引:275
作者
Zheng, B [1 ]
机构
[1] Univ Halle Wittenberg, Fachbereich Phys, D-06099 Halle, Germany
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 1998年 / 12卷 / 14期
关键词
D O I
10.1142/S021797929800288X
中图分类号
O59 [应用物理学];
学科分类号
摘要
Monte Carlo simulations of the short-time critical dynamics are reviewed. The short-time universal scaling behavior of the dynamic Ising model and Potts model are discussed in detail, while extension and application to more complex systems as the XY model, the fully frustrated XY model and other dynamic systems are also presented. The investigation of the universal behavior of the short-time dynamics not only enlarges the fundamental knowledge on critical phenomena but also, more interestingly, provides possible new ways to determine not only the new critical exponents theta and theta(1), but also the traditional dynamic critical exponent z as well as all static critical exponents.
引用
收藏
页码:1419 / 1484
页数:66
相关论文
共 126 条
[71]   Phase transitions and critical behaviour in one-dimensional non-equilibrium kinetic Ising models with branching annihilating random walk of kinks [J].
Menyhard, N ;
Odor, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23) :7739-7755
[72]   Non-Markovian persistence at the parity conserving point of a one-dimensional nonequilibrium kinetic Ising model [J].
Menyhard, N ;
Odor, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24) :8515-8521
[73]   THE DYNAMIC CRITICAL EXPONENT OF THE 2-DIMENSIONAL, 3-DIMENSIONAL AND 5-DIMENSIONAL KINETIC ISING-MODEL [J].
MUNKEL, C ;
HEERMANN, DW ;
ADLER, J ;
GOFMAN, M ;
STAUFFER, D .
PHYSICA A, 1993, 193 (3-4) :540-552
[74]  
Namiki M, 1992, STOCHASTIC QUANTIZAT
[75]  
NELSON DA, 1983, PHASE TRANSITIONS CR, V8
[76]   MONTE-CARLO SIMULATION OF THE FULLY FRUSTRATED XY MODEL [J].
NICOLAIDES, DB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (05) :L231-L235
[77]   Dynamic exponent of the two-dimensional ising model and Monte Carlo computation of the subdominant eigenvalue of the stochastic matrix [J].
Nightingale, MP ;
Blote, HWJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (24) :4548-4551
[78]   NONEQUILIBRIUM CRITICAL RELAXATION IN DILUTE ISING SYSTEMS [J].
OERDING, K ;
JANSSEN, HK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (15) :4271-4278
[79]   NONEQUILIBRIUM CRITICAL RELAXATION WITH COUPLING TO A CONSERVED DENSITY [J].
OERDING, K ;
JANSSEN, HK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (14) :3369-3381
[80]   Non-Markovian persistence and nonequilibrium critical dynamics [J].
Oerding, K ;
Cornell, SJ ;
Bray, AJ .
PHYSICAL REVIEW E, 1997, 56 (01) :R25-R28