Expression of mutant telomerase in immortal telomerase-negative human cells results in cell cycle deregulation, nuclear and chromosomal abnormalities and rapid loss of viability

被引:74
作者
Guiducci, C [1 ]
Cerone, MA [1 ]
Bacchetti, S [1 ]
机构
[1] McMaster Univ, Dept Pathol & Mol Med, Hamilton, ON, Canada
关键词
telomerase; hTR mutants; telomere malfunction;
D O I
10.1038/sj.onc.1204145
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have reconstituted wild type or mutant telomerase activity in two human cell lines that lack constitutive expression of both core subunits of the enzyme and maintain telomeres by a telomerase-independent mechanism (ALT cells). Wild type telomerase RNA and four telomerase RNAs with single point mutations in their template domain were used to express enzymes specifying different telomeric DNA sequences, Expression of wild type telomerase for up to 32 days had no detectable effect on cell growth or viability, In contrast, cells expressing mutant telomerases had slower growth rate, abnormal cell cycle and reduced viability. Dramatically aberrant nuclei, typical of cells undergoing mitotic catastrophe, and large numbers of fused chromosomes were also characteristic of these populations, Notably, all phenotypes were apparent within the first few cell divisions after expression of the enzymes. Unlike wild type, mutant telomerase activity was progressively selected against with cell culturing, and this correlated with the disappearance of cells with aberrant phenotypes. Our results suggest that even very limited synthesis of mutated sequences can affect telomere structure in human cells, and that the toxicity of mutant telomerases is due to telomere malfunction.
引用
收藏
页码:714 / 725
页数:12
相关论文
共 56 条
[1]   MRT-2 checkpoint protein is required for germline immortality and telomere replication in C-elegans [J].
Ahmed, S ;
Hodgkin, J .
NATURE, 2000, 403 (6766) :159-164
[2]   DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes [J].
Bailey, SM ;
Meyne, J ;
Chen, DJ ;
Kurimasa, A ;
Li, GC ;
Lehnert, BE ;
Goodwin, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14899-14904
[3]   Reconstitution of human telomerase activity in vitro [J].
Beattie, TL ;
Zhou, W ;
Robinson, MO ;
Harrington, L .
CURRENT BIOLOGY, 1998, 8 (03) :177-180
[4]   Ku binds telomeric DNA in vitro [J].
Bianchi, A ;
de Lange, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (30) :21223-21227
[5]   Telomeric localization of TRF2, a novel human telobox protein [J].
Bilaud, T ;
Brun, C ;
Ancelin, K ;
Koering, CE ;
Laroche, T ;
Gilson, E .
NATURE GENETICS, 1997, 17 (02) :236-239
[6]  
Blackburn EH, 1997, BIOCHEMISTRY-MOSCOW+, V62, P1196
[7]   Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2 [J].
Broccoli, D ;
Smogorzewska, A ;
Chong, L ;
deLange, T .
NATURE GENETICS, 1997, 17 (02) :231-235
[8]   The telomere lengthening mechanism in telomerase-negative immortal human cells does not involve the telomerase RNA subunit [J].
Bryan, TM ;
Marusic, L ;
Bacchetti, S ;
Namba, M ;
Reddel, RR .
HUMAN MOLECULAR GENETICS, 1997, 6 (06) :921-926
[9]   TELOMERE ELONGATION IN IMMORTAL HUMAN-CELLS WITHOUT DETECTABLE TELOMERASE ACTIVITY [J].
BRYAN, TM ;
ENGLEZOU, A ;
GUPTA, J ;
BACCHETTI, S ;
REDDEL, RR .
EMBO JOURNAL, 1995, 14 (17) :4240-4248
[10]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501