Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries

被引:382
作者
Li, Sheng [1 ]
Qiu, Jingxia [1 ]
Lai, Chao [1 ]
Ling, Min [1 ]
Zhao, Huijun [1 ]
Zhang, Shanqing [1 ]
机构
[1] Griffith Univ, Ctr Clean Environm & Energy, Griffith Sch Environm, Environm Futures Res Inst, Gold Coast, Qld 4222, Australia
基金
澳大利亚研究理事会;
关键词
Sodium ion battery; Capacitive; Anode; Graphene; Intercalation; ELECTROCHEMICAL ENERGY-STORAGE; LOW-COST; CARBON NANOFIBERS; RATE CAPABILITY; DOPED GRAPHENE; TIO2; ANATASE; PERFORMANCE; NANOCOMPOSITE; INSERTION; OXIDE;
D O I
10.1016/j.nanoen.2014.12.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to the poor transportability of sodium ions, conventional sodium ion batteries (SIBs) cannot deliver sufficient capacity for high rate applications. Surface-induced capacitive processes (SCP) (e.g. capacitance and pseudocapacitance) could provide fast charge/discharge capacity in conjunction with the capacity provided by diffusion-controlled intercalation processes (DIP) to address this issue. For the first time, SCP was used to design a hierarchical layered graphene composite as an anode material for high rate SIBs. The contributions of the individual sodium storage processes were quantitatively evaluated, verifying the proposed mechanism. The resultant SCP-enhanced SIB delivers an outstanding rate capacity of 120 mAh/g at 10 A/g, which is among best of the state-of-the-art carbon-based SIBs. It also demonstrates exceptional cycling stability, retaining 83.5% capacity of 142 mAh/g at 0.5 A/g after 2500 cycles. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:224 / 230
页数:7
相关论文
共 53 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[4]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[5]   Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits [J].
Cericola, Dario ;
Koetz, Ruediger .
ELECTROCHIMICA ACTA, 2012, 72 :1-17
[6]   Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance [J].
Chen, Taiqiang ;
Liu, Yong ;
Pan, Likun ;
Lu, Ting ;
Yao, Yefeng ;
Sun, Zhuo ;
Chua, Daniel H. C. ;
Chen, Qun .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4117-4121
[7]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[8]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[9]   Lithium Insertion/Deinsertion Characteristics of Nanostructured Amorphous Tantalum Oxide Thin Films [J].
Dang, Hoang X. ;
Lin, Yong-Mao ;
Klavetter, Kyle C. ;
Cell, Trevor H. ;
Heller, Adam ;
Mullins, C. Buddie .
CHEMELECTROCHEM, 2014, 1 (01) :158-164
[10]   1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries [J].
Deng, C. ;
Zhang, S. ;
Dong, Z. ;
Shang, Y. .
NANO ENERGY, 2014, 4 :49-55