Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction

被引:1698
作者
Yang, Zhi [1 ]
Yao, Zhen [1 ]
Li, Guifa [2 ]
Fang, Guoyong [1 ]
Nie, Huagui [1 ]
Liu, Zheng [1 ]
Zhou, Xuemei [1 ]
Chen, Xi'an [1 ]
Huang, Shaoming [1 ]
机构
[1] Wenzhou Univ, Nanomat & Chem Key Lab, Wenzhou 325027, Peoples R China
[2] Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China
关键词
sulfur-doped graphene; nonprecious-metal catalysts; fuel cell; oxygen reduction reaction; HIGH ELECTROCATALYTIC ACTIVITY; GRAPHITE OXIDE; CARBON; SHEETS; STABILIZATION; NANOTUBES; ARRAYS;
D O I
10.1021/nn203393d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tailoring the electronic arrangement of graphene by doping is a practical strategy for producing significantly improved materials for the oxygen-reduction reaction (ORR) in fuel cells (FCs). Recent studies have proven that the carbon materials doped with the elements, which have the larger (N) or smaller (P, B) electronegative atoms than carbon such as N-doped carbon nanotubes (CNTs), P-doped graphite layers and B-doped CNTs, have also shown pronounced catalytic activity. Herein, we find that the graphenes doped with the elements, which have the similar electronegativity with carbon such as sulfur and selenium, can also exhibit better catalytic activity than the commercial Pt/C in alkaline media, indicating that these doped graphenes hold great potential far a substitute for Pt-based catalysts in FCs. The experimental results are believed to be significant because they not only give further insight Into the ORR mechanism of these metal-free doped carbon materials, but also open a way to fabricate other new low-cost NPMCs with high electrocatalytic activity by a simple, economical, and scalable approach for real FC applications.
引用
收藏
页码:205 / 211
页数:7
相关论文
共 32 条
[1]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[2]   Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions [J].
Chen, Zhongwei ;
Waje, Mahesh ;
Li, Wenzhen ;
Yan, Yushan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (22) :4060-4063
[3]   Heteroatom doped carbons prepared by the pyrolysis of bio-derived amino acids as highly active catalysts for oxygen electro-reduction reactions [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
GREEN CHEMISTRY, 2011, 13 (02) :406-412
[4]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[5]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[6]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[7]  
Kinoshita K., 1988, CARBON ELECTROCHEMIC
[8]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388
[9]   Structure of graphite oxide revisited [J].
Lerf, A ;
He, HY ;
Forster, M ;
Klinowski, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (23) :4477-4482
[10]   Highly conducting graphene sheets and Langmuir-Blodgett films [J].
Li, Xiaolin ;
Zhang, Guangyu ;
Bai, Xuedong ;
Sun, Xiaoming ;
Wang, Xinran ;
Wang, Enge ;
Dai, Hongjie .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :538-542