Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor

被引:3108
作者
Das, A. [1 ,2 ]
Pisana, S.
Chakraborty, B. [1 ,2 ]
Piscanec, S.
Saha, S. K. [2 ]
Waghmare, U. V. [3 ]
Novoselov, K. S. [4 ]
Krishnamurthy, H. R. [2 ]
Geim, A. K. [4 ]
Ferrari, A. C. [1 ]
Sood, A. K. [2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[3] Jawaharlal Nehru Ctr Adv Sci Res, Theoret Sci Unit, Bangalore 560064, Karnataka, India
[4] Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1038/nnano.2008.67
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The recent discovery of graphene(1-3) has led to many advances in two-dimensional physics and devices(4,5). The graphene devices fabricated so far have relied on SiO2 back gating(1-3). Electrochemical top gating is widely used for polymer transistors(6,7), and has also been successfully applied to carbon nanotubes(8,9). Here we demonstrate a top-gated graphene transistor that is able to reach doping levels of up to 5x10(13) cm(-2), which is much higher than those previously reported. Such high doping levels are possible because the nanometre-thick Debye layer(8,10) in the solid polymer electrolyte gate provides a much higher gate capacitance than the commonly used SiO2 back gate, which is usually about 300 nm thick(11). In situ Raman measurements monitor the doping. The G peak stiffens and sharpens for both electron and hole doping, but the 2D peak shows a different response to holes and electrons. The ratio of the intensities of the G and 2D peaks shows a strong dependence on doping, making it a sensitive parameter to monitor the doping.
引用
收藏
页码:210 / 215
页数:6
相关论文
共 32 条
  • [1] THE DIELECTRIC-CONSTANT OF LAMELLAR SEMICRYSTALLINE POLYMERS
    BOYD, RH
    [J]. JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1983, 21 (04) : 505 - 514
  • [2] Raman fingerprint of charged impurities in graphene
    Casiraghi, C.
    Pisana, S.
    Novoselov, K. S.
    Geim, A. K.
    Ferrari, A. C.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (23)
  • [3] Doping in carbon nanotubes probed by Raman and transport measurements
    Das, Anindya
    Sood, A. K.
    Govindaraj, A.
    Saitta, A. Marco
    Lazzeri, Michele
    Mauri, Francesco
    Rao, C. N. R.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (13)
  • [4] Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors
    Dhoot, Anoop S.
    Yuen, Jonathan D.
    Heeney, Martin
    McCulloch, Iain
    Moses, Daniel
    Heeger, Alan J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (32) : 11834 - 11837
  • [5] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [6] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [7] Spatially resolved raman spectroscopy of single- and few-layer graphene
    Graf, D.
    Molitor, F.
    Ensslin, K.
    Stampfer, C.
    Jungen, A.
    Hierold, C.
    Wirtz, L.
    [J]. NANO LETTERS, 2007, 7 (02) : 238 - 242
  • [8] Raman scattering from high-frequency phonons in supported n-graphene layer films
    Gupta, A.
    Chen, G.
    Joshi, P.
    Tadigadapa, S.
    Eklund, P. C.
    [J]. NANO LETTERS, 2006, 6 (12) : 2667 - 2673
  • [9] Energy band-gap engineering of graphene nanoribbons
    Han, Melinda Y.
    Oezyilmaz, Barbaros
    Zhang, Yuanbo
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)
  • [10] Transport measurements across a tunable potential barrier in graphene
    Huard, B.
    Sulpizio, J. A.
    Stander, N.
    Todd, K.
    Yang, B.
    Goldhaber-Gordon, D.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (23)